2O\ ®w mI-

mITIcr—0<

ISC

€ BﬂﬂK

Accessing the TRS-80" ROM

VOLUME 11
INPUT h
OUTPUT ~

Richard P. Wilkes
Stephen C. Hill

THE B§K
ACCESSING THE TRS-80 ROM

VOLUME II: INPUT/OUTPUT

Richard P. Wilkes
Stephen C. Hill

Technical Assistance

Roy Soltoff
Raymond E. Daly IV
‘Thomas B. Stibolt, Jr.

ILLUSTRATIONS BY
INFINITY GRAPHIX

Insiders Software Consultants
P.O. Box 2441
Springfield, VA 22152

Copyright © 1981 by Insiders Software Consultants, Inc.
All rights reserved.

First Edition 1981

Reproduction in any manner, electronic, mechanical, mag-
netic, optical, chemical, manual or otherwise, without ex-
pressed written permission, is prohibited.

Disclaimer:

While Insiders Software Consultants, Inc. has taken every
precaution in the preparation of this book, it assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the
information contained herein.

Radio Shack™ and TRS-80™ are registered trademarks of the
Tandy Corporation.

Insiders Software Consultants, Inc.
PO Box 2441,
Springfield, VA 22152

To Mom, Sharon, Mr. Irwin, and Steve
without whose love and encouragement through
many trying times I could never have made it.

-RPW

I would like to dedicate my portion of this book
to my Mother, who is stilil amazed; my wife Sheila,
who took charge of the operations of the company
allowing us to finish this volume:; and to
Doug Manley, who showed me the Magic.

~-SCH

Table of Contents

Preface 0000 1011
Introduction 0000 1101

Chapter 1l: Introduction to I/0 on the TRS5-80
Device Control Block
Data Flow
DRIVER
INBYT
OUTBYT
CTLBYT
Data Flow Flag Byte
DCB Definition
I/0 Register Usage
Driver Routines

MJMEMPJMETPJM‘MFJP
OV e W W B RO B B B

Chapter 2: The Keyboard
Memory Mapping
Decoding and the Matrix
Key Bounce
Keyboard DCB
Interfacing Routines
Single Character Scans
Single Character Inputs
Buffered Line Input

(I |

i

NNMN!})MNNM
Pt Bt et el A O L DO Rt

b OO

Chapter 3: The Video
Cathode Ray Tube
Character Output
Graphics Output
Video DCB
Interfacing Routines
Single Character Output
Clearing the Screen
SET, RESET and POINT
Iinput from Video

T I

I

b ()t L L L0 L L G b
| |
B b LI P A W 000~ b b

Chapter 4: The Printer
Line Printer Status
Printer DCB
Interfacing Routines
Null Printer Driver

S S SN
|

Table of Contents

Chapter 5:

Chapter 6:

Single Character OQutput

The Tape

Tape Hardware Description
Tape Software Description
Writing Data

Reading Data

Tape Formats

BASIC Tape Format

Data Tape Format

System Tape Format

Assembler Source Tape Format
Interfacing Routines
Cassette Recorder and Latch Control
Tape Reading Routines

Tape Writing Routines

ROM Disassembly: I/0
CBOOT
RETO8
WHERE
RST1e6
INBYT
RST24
QUTRYT
RE8T32
CTLBYT
R8T40
KBSCAN
RST48
CRTRBYT
RST56
LPTBYT
BUFFNV
DRIVRV
GETCHR
KBTBL
DELAY
NMI
CSTLIIX
MEMSIZ
L3ERR
POINT
SET
RESET
INKEY
CLS
RANDOM
CWBIT
CTOFF

U T I I |

U .

mmmmmmmtlnmmmmmm =
Pt bed QOO0 3 3 O LA LR s L0 G ed el R

Pt D

{20 O T D R U S N NN DY B T |

R A T L e e e
th:m\ou:m~40\c\mtﬁ(nLnu1h;hﬁaﬁ»p.ﬁLAUJw(utnu:Nruh}w

AN AN OO AN DR NN D
|

Table of Contents

CTON 6-13
DEFDRV 6-13
CLRCFF 6-13
STATFF 6-13
CSTAR 6-14
CRBYTE 6-14
CRBIT 6~14
CW2BYT 6-14
CWBYT 6-15
CTONWL 6-15
CTONRL 615
CRLDR 6-16
CSTARS 6-16
SYSTEM 6-16
DSPCHR 618
POSIND 6-19
KBDSCN 6-19
INCHRS 6-19
GTDCHR 6—-20
RSTDEV 6~20
LPDCHR 6-20
DRIVER 6-21
DRVRET 6-21
KEYIN 6-21
VIDEC 6-24
LPTDRV 6-28
PSTATU 6-28
BUFFIN 6-29
COLDST 6-32
DISKBT 6-32
BASIC 6-33
RSTRTS 6-33
Chapter 7: Other I/0 Routines 7-1
Where Are We ? 7-1
Using RST16 71
Using RST24 7-2
Using DELAY 72
Using DSPCHR 7-2
Using INCHRS 7-3
Using QINPUT 7-3
Using MSGOUT 7=3
Chapter 8: Random Ramblings 8-1
RANDOM 8-1
Code Hiding 8-2
Short Timing Delays 8~2
Disabling the Break Key 8-3

Table of

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Contents

A: The Label Table

B: Lower Case Driver

C: Alternate SYSTEM Loader

D: The ASCII Table

E: The TRS~80 Graphics

F: SET/RESET/POINT Routine

G: Lower Case Hardware Conversion
H: Parallel Printer Driver

I: Hexadecimal Conversion Tables

A-1
B-1
C-1
D=1

E-1

Preface

Information in this book is presented in sequential
order. The basic concepts presented in Chapter One are
used as the foundation for the more concise information
found in the later sections. You should become comfortable
with the introductory chapter before moving to the other
specific discussions of I/0. After Chapter One, the other
sections may be perused in any order, but each individual
chapter should be read completely. Do not skip directly to
the interfacing examples at the end of the chapter.

An aliphabetical index is not supplied with this
volume. As was done with Volume I, the detailed Table of
Contents should be used to locate guickly items of
interest.

This book was written using the Scripsit word pro-
cessing package from Radio Shack (Catalog 26-1563) with the
SuperScript modification from Acorn Software Products;
634 North Carolina Avenue, SE; Washington, DC 20003, As-
sembled programs found in the appendices were written under
the disk-based editor/assembler LDAS 3.4 from MISOSYS;
5904 Edgehill Drive; Alexandria, VA 22303. The text was
printed using an NEC Spinwriter HModel 5330.

0000 1011

Introduction

Ah, the well laid plans of mice and men... that”s what comes to mind when
we think of this volume. It was supposed to appear in September 1980, then
October, November, and December. Finally, in the first days of January 1981,
all the technical difficulties have been solved, and we have Volume II of
The BOPK: Accessing The TRS-80 ROM. To those of you that have patiently
awaited this volume, thank you. We think you will be pleased with the results.

Several books have appeared on the market which cover ‘"completely" the
workings of the TRS-80 ROM. It seems strange that anyone could completely
cover a 12K program in less than 200 pages. When interfacing to ROM routines,
one has to know the full story, not simply a brief explanation. We have tried
to tzke the guesswork out of interfacing. For this reason, we have devoted an
entire volume to the math routinmes and an entire volume to input/output.

Provided in this volume is a complete interfacing guide for each of the
Level Il I/0 units. You will note that we have spent a great deal of space in
each chapter explaining the HOW's and WHY"s of each device. It is easy to use
just the ROM routines, but as you write more sophisticated software, you will
probably have to control the devices directly. The techmical information given
in each chapter is vital when writing customized drivers.

And, of course, we all can learn from analyzing another person”s code. If
you have a TRS-80 or are writing programs for ome 1in assembly language, you
have probably disassembled the ROM; that”s where it starts, Unfortunately, the
process of commenting bare, disassembled code takes many painstaking hours.
Take a look in chapter 6; in it you will find the comments for the I/0 rou-
tines——all you need are the operands (space is provided for you to enter them).

In the appendices, you will find useful lists, tables, and assembly lan-
guage routines, including anm alphabetized 1list of the labels found in
Appendix A of Volume I, a lowercase driver, a table of graphics characters, a
SET/RESET/POINT routine, and an ASCII table.

Completeness and accuracy have been the major goals in this series. We
welcome any constructive comments, additions, or suggestions. Please feel free
to write us.

Thank you and happy computing,

Insiders Software Consultants, Inc.
PO Box 2441
Springfield, VA 22152

U.5.A.

0000 1101

Introduection to Input/Qutput on the TRS-80

This volume is dedicated to two very important aspects
of every computer--the input and output (1/0) of data and
information 1in a form that can be easily understood and
manipulated by both the computer and vyou, the owner,
operator, and user of the TRS-~80. Throughout this volume,
the term "TRS-80" only refers to the TRS-80 Model I
microcomputer sold by Radio Shack, a division of Tandy
Corporation. As mentioned in the Introduction,
descriptions and discussions will be kept as simple as
possible. However, some knowledge of Z—-80 assembly
language is helpful.

There are two major methods used to input information
into the TRS-80; the primary source 1s the keyboard. A
full discussion of the keyboard and the Read Only Memory
(ROM) routines wused in conjuction with this device are
provided in chapter 2. The second device used for input is
the cassette tape unit, discussed in chapter 5.

Although there are other means that may be used ¢to
input data into the computer, these are the only two that
are supported by the Level II ROM. One must remember that
the information provided applies ONLY to Level II. When
programming under a Disk Operating System (DOS), it may be
necessary to add certain precautionary steps to any
assembly language programs which use ROM routines for 1I/0.
Whenever possible, problem areas are noted, but the
ultimate responsibility lies with the programmer.

There are three devices which are used for output.
They are the video display or Cathode Ray Tube (CRT), the
hardcopy device or PRINTER, and the cassette TAPE. Of
these units, the video display is used most often. It is
discussed 1in chapter 3. A printer may be attached to the
TR5-80 Level 1II system to produce hardcopy, although a
special cable 1is necessary. Information on the printer
routines is provided in chapter 4. The use of the cassette
tape as an output device is included in. chapter 5.

Introduction to I/0

The Level II ROM uses a well defined procedure to
access, or drive, most of the devices. The procedure
consists of sSix steps. The first step is the definition of
the data flow [either user~to-computer {(input) or
computer—to-user (output)l. The second step is the
selection of a Device Control Block (DCB) by identifying
its address in RAM memory. The third step consists of
saving most of the CPU registers in order to preserve their
contents during the I/O driver execution. Then, the driver
routine is executed. The step after execution is the
restoration of the registers. Finally, control returns to
the calling procedure, with the registers in various states
depending on the I/0 request.

Each of the above steps will be discussed at length in
the following sections. It is recommended that you become
comfortable with weach section before continuing. A
complete understanding of these points is assumed 1in later
chapters.

For clarity, only the keyboard, video, and printer
devices will be used as examples. The tape unit does not
conform to the above procedure; conseguently, it is left
out of this introductory discussion to avoid confusion.
The method of utilizing the tape unit, as noted previously.
is fully discussed in chapter 5.

DATA FLOW

Depending on the device, data may flow TO the device,
FROM the device, or TO and FROM the device. The ROM I/0
routines provide a method of avoiding possible conflicts in
I1/0 requests by passing a flag byte from the <c¢alling
procedure to the I/0 routine. This byte is compared to the
FLAG byte stored in the DCB. If a VALID request is made,
execution continues. However, if an INVALID request 1is
made, such as output to the keyboard, a routine which
handles invalid requests is executed.

The determination of the validity of the request is
performed by the I/0 master driver found in ROM at location
03C2H, hereafter referred to as DRIVER. The DRIVER routine
is usually accessed by a CALL to either the INBYT routine
located at 0013H or the OUTBYT routine at location 001BH.
Before the call, the DE register pair (referred to as
'DE'), is loaded with the address of the DCB.

Introducticon to I/0

These two routines (INBYT and OUTBYT) simply define
the data flow direction. INBYT, which loads the flag byte
in register B ('B') with 01H, informs DRIVER that the flow
will be to the calling routine from the device. OUTBYT
loads 'B' with O02H which denotes an output operation; data
flow is from the calling routine to the device.

Another routine is present in the ROM for sending a
control byte to a device. This CALL {(to location 0023H) is
not used by the ROM, but is present for other user~defined
drivers. CTLBYT loads 'B' with 04H and then passes control
to DRIVER for processing of the request.

As the reader may have noticed, the flag bytes placed
in the 'B' register only have one bit set. The flags are
used as follows:

Bit 0: 0000 0001 = Q1H 7 INPUT flag
Bit 1: 00600 0010 = 02H ;OUTPUT flag
Bit 2: 0000 0100 = Q4H ; CONTROL flag

Now, 1let wus 1look at the DCB's £for the different
devices. As previously mentioned, the DRIVER checks the
DCB for the flag byte. This flag byte is stored in the
first byte of the DCB. The initial values are as follows:

4015: KBTYP DEFB (01H ; KEYBOARD: Input only
401D: CRTTYP DEFB 07H s CRT: In/Out/Control
4025: LPTTYP DEFB (06H s PRINTER: Out/Control

Careful examination of these values shows that a given
device may be able to handle one, two, or all three types
of requests. A set bit (Bit is high, or 1} denotes that
the device addressed by this DCB is capable of the
corresponding request. For example, if the request is for
input, one <can see that both the keyboard and video are
capable of input, but the printer i1s not. A guick note:
the use of the video display for input is not user input
but input from the screen memory. This may not make sense
here, but it will become more clear after the discussion of
the video in chapter 3. For now, just remember that it is
capable of input.

Introduction to I/0

DCB DEFINITION

The Device Control Block contains information which is
dependent on the type of device it describes. However, for
Level II devices, the first three bytes are always used for
the same purpose. The first byte was just discussed and is
the I/0 reguest flag used in data flow. The next two bytes
contain the address of the device driver, which contains
the I/0 unit dependent code. In other words, a Kkeyboard
and a video display require different "programs"™ to make
them work in an acceptable manner. Therefore, after a
certain amount of validity checking, the master driver must
pass control to a routine which handles the I/0 device.

As is the case with most addresses stored in memory,
the location of the driver is stored with the
Least Significant Byte (LSB) first, followed by the

Most Significant Byte (MSB). When DRIVER gets control, the
address of the DCB is (or atleast should be) in 'DE’.

DRIVER then loads this into 'IX' and uses this index
register to pick out the device driver address and load it
into 'HL'. Here is an example of a user-defined DCB located
at 7000H which is used to define an input device driver at
address 735AH:

7000 ClH (IX + 00H) ;Type flag = INPUT

7001: 5AH {(IX + 0lH) ;LSR Driver address
7002: 73H {(IX + 02H) :MSB Driver address
7003: . {IX + 03H) ;Misc status bytes

7007 . (IX + 07H) .

DRIVER takes this DCB and loads the LSB into 'L' using
the instruction "LD L, {(IX+01H)" and then loads the MSB into
'H' using "LD H,(IX+02H)." Transfer is then passed to the
I/0 handler for the device using a "JP (HL}" 1instruction.
The return address to DRIVER, DRVRET, has been placed on
the top of the stack by a "PUSH HL" at 03CCH. Therefore, a
RET instruction in the handler will return to DRIVER at the
point in which it restores the registers. Control then
passes to the CALLing routine by RETurning to the address
at the top of the stack.

Introduction to I/0

REGISTER USAGE

Obviously, during the execution of the I/0 process
some registers are going to be used. DRIVER saves almost
all registers. Here are some important points to remember:

1) Level 1II does not use the alternate register set;
therefore, DRIVER does not save these registers.
If a user defined driver utilizes these registers,
be certain that it does not destroy their values.

2) All current-set registers except 'DE' & 'AF' are
stacked before execution of the 1/0 process. The
stack during the I/0 handler execution is as

follows:
TOP OF STACK: DRVRET ;Return Address to
; DRIVER to restore
; registers that
; follow.
"DE* ;:DCB address
TIX? ;IX before I/0 Req.
THL?Y ;HL before 1I/0 Req.
'BC? ;BC before I/0 Req.
; BC is PUSHED by
; INBYT/OUTBYT/CTLBYT
RETADR ;Return address to
; CALLing routine,
3) The YIY? register is not used at all by
Level II. If it is not used in the driver, there

is no need to save it. This fact contradicts
the nadio Shack assembler manual.

4) DRIVER sets up the registers and flags as follows
before transfering control to the device driver:
a) Stack as shown above
b) 'C' contains the old contents of 'A’
c) '"HL' contains address of driver
d) 'IX' contains address of DCB
e} The Carry flag is set if Input request
f) The Zero flag is set if Output request
g; Test for No Carry for Control-byte request

Introduction to 1/0

Careful consideration of the above points 1is necessary
for proper utilization of the ROM routines. You must be
certain that the environment and stack are preserved at all
times. Failure to do so may cause unpredictable results or
the c¢rashing of the computer (in other words, the program
may wind up in OZ when it was looking £for Kansas). The
structure of the DCB allows for a great deal of
flexibility; yet, much caution must be taken when
manipulating these areas to avoid system errors.

DRIVER ROUTIRES

The driver routines are as varied as the devices they
control. The video routine must perform the scrolling,
cursor positioning, manipulation of the screen depending on
the control character sent, and many other sophisticated
functions. The keyboard routine must "scan" the Kkeyboard
memory {(a concept that will be discussed later) to
determine 1if a new <character has been pressed and then
‘decode the scan into the appropriate character. Other
drivers may be egqually as complicated.

At some time 1iIn the future, you may wish to replace a
ROM driver with another, more customized driver. Of
course, some compatibility must remain in order <£for the
machine to function properly. It is recommended that the
programmer ¢f such a driver analyze the ROM drivers first,
paying close attention to the one that 1is to be replaced.
After <careful study, design the driver to suit the
requirements of the situation, but be very cautious. The
programmer must take into consideration many different,
varying environments. The ROM is a complicated world.

At this stage, an example may be necessary to prove
the point. Let's take the video driver. The video driver
does a lot of work! It tracks cursor position on the
screen, position in the line, whether the cursecr is on or
not, whether the cursor is hiding a character, and whether
the screen is in 32-character mode, which changes just
about everything. Once again, be very thorough; it pays
off in the end.

1-6

Introduction to I/0

Each of the drivers is discussed 1in their respective
chapters, so very little needs to be added at this point.
The complexity of a replacement driver is only limited by
creativity. For instance, one could develop a
sophisticated video driver with blinking cursor, direct
cursor addressing, multiple pages, right-to-left and
left~to~right scrolling, variable tab stops, upper and
lowercase, etc. Truye, programming these features mnay be
beyond one's patience or capability. Nevertheless, they
are possible,

When you load a new driver into RAM, the items that
you need to change are the address of the driver in the DCB
and the flag byte. Also, other storage areas 1in the DCB
must be changed to suit the new driver. Be sure that the
driver is fully operational before modifying the DCB to
avoid crashing the device and possibly the system.

REGISTER RESTORATION AND I/0 COMPLETION

After the device driver is finished, control is passed
to DRIVER, which restores the registers {except 'DE' and
*AF'} and control is returned to the calling routine. If
'DE! is to be restored to its original state, it must have
been saved by the caller before the request.

All flags and values from the ROM drivers are passed
in ‘'AF'. After testing the £flags or storing the returned
data (if any is returned), 'AF' <can be restored IF it was
saved earlier along with 'DE'.

This completes the 1I/0 driver procedure. Some of the
peints made will be clarified and expanded in the
individual chapters pertaining to the devices. At this
point, if the reader is unsure about the procedure, the
above sections should be re-read.

Introduction to 1/0

INVALID REQUESTS

A special note to programmers:

When an invalid request is made (such as input from
the '‘printer), the ROM passes control to 4033H. This is the
first address of a three-byte area used to store a JP to a
handling routine. However, under normal Level II, these
addresses contain:

4033 LD A,0 1Clear Accumulator
4035 RET ;Back to DRIVER
; Restore registers

This short routine simply clears 'A' and returns to DRVRET
to restore the registers and return to the caller without
executing a device handler.

It should be noted that almost ALL disk operating
systems ©place a vector at these locations which causes
execution of a disk I/0 driver if an invalid request 1is
made; results are unpredictable and could be fatal.
Consequently, if one is going to experiment wicth the DCB's,
be sure to control these addresses.

i-8

Input: The Keyboard

The primary device used for input to the TRS-80 is the
keyboard; it 1is also perhaps the hardest device to
understand. Many users think that when one presses the A"
key that the keyboard sends the character "A" to the
computer. This is not the case as we shall soon see.

The TRS-80 keyboard consists of 53 single-pole,
single-throw, normaily open keys (65 with the numeric
keypad). Bach of the keys is assigned a location in a
keyboard matrix. When a switch is closed (key pressed), it
will short out a horigontal 1line to a vertical line,
causing the appropriate element in the array to be
"activated." In other words, when a key 1s pressed the
contact causes an electrical “"short." I[This does not mean
that your keyboard will burst into flames 1f you type too
guickly. In this case, electical short simply means an
electrical "connection".] This short is translated into a
"1" bit in the assigned location in the matrix. This bit
will stay on until the key is released.

What does this all mean? Well, it means that the task
of figuring out the ASCII value of the key pressed on the
board is not as easy as one might hope. First of all, the
only thing we have to work with is a matrix of signals. 1In
addition, more than one signal may be on at a time. Also,
a signal stays on as 1long as the key 1is pressed.
Therefore, there must be a method of decoding and then a
method of determining whether the key was pressed during
the last scan in order to make sense out of the matrix.
Before we can intelligently digcuss the matrix and
decoding, we must define the concept of memory mapping.
After the introductory sections, we will present the actual
interfacing to the ROM routines.

2-1

The Keyboard

MEMORY MAPPIRG

There are two techniques used to access I/0 devices in
the TRS-80. One method uses the Z80 I/0 ports. The
devices are accessed by performing IN's and OQUT's to these
ports; the tape unit uses this method. On the other hand,
the method used by both the keyboard and the video is
memory mapping. Each device is accessed by referring to
its addresses in memory. Let's take an example. We'll use
the printer since it is the easiest to understand.

The printer uses the address 37E8H. Meaning, 1if you
want to read the status of the printer, yvou would perform
an LD A,{(37E8H). This instruction would retrieve the
status of the printer intoc the accumulator. After testing
the status to see whether the printer is ready, we could
send an ASCII character stored in 'A' to the device by
performing a LD (37E8H) ,A.

This example shows that when you specify the address
37E8H in an assembly language program on the TRS-80, you
are not accessing a ROM or RAM address but a device. The
specifics regarding the printer are discussed in a later
chapter. What we are trying to stress here is that some
devices on the TRS-80 are operated using instructions which
normally refer only +to memory. Therefore, 1f you store a
byte in an address used by a device, and vou read it back
from the address later, it may not be the same. For this
reason, you should not use the device addresses as storage
areas.

The keyboard and video are addressed similarly. All
three devices wuse addresses between the end of the ROM at
2FFFH and the beginning of RAM at 4000H.

Memory mapping is used for the keyboard, video, and
printer. When a device is said to be "addressed" at a
certain hex location, it means that the I/0 device is
memory mapped to that location. Keep this fact in mind in
the following sections.

The Keyboard

DECODING AND THE MATRIX

The keyboard matrix (KEYMEM) is addressed at 3800H and
continues to 3BFFH. The matrix is actually made up of
eight "rows"” and eight "columns,” where the addresses make
up the rows and the values that are read from the addresses
make up the columns. For the time being, we will ignore
the MSB of the address and concentrate on the Jlow order
byte.

When scanning the keyboard, the following addresses
are used: 3801H, 3802H, 3804H, 3808H, 3810H, 3820H, 3840H,
and 3880H. The binary representation of the LSB's are as
follows:

Bit
01n
02H
048
08H
10H
20H
40H
80H

[T O | O (I TR T Q=
OO OoOOOo
O OO0 O M
OO OOO WL
COOHOOODD .
oo OOoO W
COOOOR OO N
COOO0 Qo
COOOQ OO O

You should note that only one bit is set and that bit may
be located in one of eight different locations. In this
manner, the TRS5-80 defines one of eight "rows."

In each row, we can have up to eight values. Let’'s
assign each of these values to an individual bit and look
at the matrix.

The Keyboard

Column bit: 7 6 5 4 3 2 1 0
80H 40H 20H 108 08H 04H 02H O1lH
Row bit: 7 [80H] CTL SFT
6 F40H] SPA R.A L.A D.A U.A BRK CLR ENT
5 [20H] / . - ' H : 9 8
(w/SFT) ? P = < + >) {
4 {10H] 7 6 5 4 3 2 1 0
{(w/SFT) ! & 3 $ # " !
3 [08H] Z Y X
2 [0Q4H] W v U T S R Q P
1 [02H] 0 N M T K J I H
0 [01H] G F E D C B A @
ENT = Enter CLR = Clear BRK = Break
U.A = Up arrow D.A = Down arrow R.A = Right arrow
L.A = Left arrow SPA = Space SFT = Shift

CTL = Blectric rencil Control

At this point, an example would help to pull together
this matrix concept. Let's look at row 1. It is assigned
to bit 1 in the address table. We note that the LSB for
this row is 02H (bit 1 = 02H); therefore, we will peek at
location 3802H to look at this row.

LD A,{(3802H)

We find the wvalue in 'A*' to be 04H. Looking at the above
table, we see that this corresponds to the letter 'J' which
1s at bit 2. In this manner, the TRS-80 1locates the
correct column by the value read from the row address.

That is pretty straight forward, but what happens when
more than one key is pressed in the same "row?" For
example, what would be the value at 3802H 1if botn the
letter 'J' and the letter 'M' were pressed. Simply. the
letter *J' would cause bit 2 to be set, and the letter 'M!
would cause bit 5 to be set. Then, adding (or in assembly
langauge, ORing) the appropriate values for these bits, we
get 04H + 20H = 24H, which is the value at 3802H when 'J'
and 'M' are pressed.

24

The Keyboard

The keyboard is what may be called a "passive" device
(it enjoys being stroked...). The mere pressing of a key
causes no action in the TRS-80 CPU. The keyboard must be
scanned. This scanning is not continuous and is performed
only when requested by Level II or a user routine.

The non-continuous scan causes a problem with keyboard
decoding. The problem is this: the system notes that a key
is pressed during a scan and returns the matrix value of
the character to the caller. The keyboard is re-scanned
while the key is still pressed. This scan will also note
the depression and return the value of the character. There
must be a method of decoding which can distiguish between
the new keys pressed and the keys that have already been
noted. The Level 1II ROM wuses a table at 4036H-403CH
(KBIMAG) to perform this differentiation. KBIMAG 1s used
to store a mirror image of the eight row address values
that were read during the last scan.

Here is a possible scenario. The letter 'J' 1is
depressed. The keyboard scan picks up the depression in
location 3802H and notes the value, 04H. It stores this
value in the KBIMAG table at location 4037H. The rest of
the table 1is set to zero since no other keys are depressed.
The 'M' key is then depressed while the *'J' is still held
down. The next scan sees at location 38028 a 24H. The
scanner then looks at KBIMAG location 4037 and finds a
04H, the value from the last scan. It notes that the (04H
key (the 'J') had been depressed on the last pass, or scan.
It eliminates this key. The value then becomes 20H. Aha!
This is obviously an "M.! This character 1is returned to
the system as a newly depressed key. The value 24H is then
stored into KBIMAG.

The above 1s an example of how the system determines
what key has been depressed on the keyboard. For the
assembly code 1involved to calculate the ASCII value to
return, refer to the disassembly [KEYIN at 03E3H].

Hark! I hear a small voice crying out, "What about
debounce?" Well, first we must explain what "bounce" is.
Bounce 1is that unfriendly phenomenon that occurs when one
presses on a key once and gets two characters. Briefly,
here is what happens.

The Keyboard

2-6

The Keyboard

INFEIMITY

Sz part
1980

The Keyboard

When a key is pressed, contacts on the inside of the
key close and touch. This connection causes the short
which ultimately results in the bit being set.
Unfortunately, this connection may not be solid.
Therefore, the key is pressed and the connection made. The
scanner picks this up. Then, the connection is lost while
the contacts settle (contacts bounce against each other).
The scanner clears KBIMAG since the key is "no longer
pressed.™ The connection settles. The scanner finds this
new key. Gee, auto repeat! Not funny, especially to those
who are plagued by it.

What is truly amazing about all this is that Radio
Shack has actually responded to all the complaints! The new
keyboards coming from the Shack have gold contacts. They
are easier to use when touch typing since the are slightly
curved, have a matte finish, smaller keycap lettering, and
respond to a faster stroke. These keyboards are virtually
"bounceless."

But what about the poor soul with the old keyboard?
There is currently a tape that eases the discomfort of the
bounce. In addition, many “"debounce" routines have been
published in magazines. Choose the most convenient one
that works and stick with it. [Debounce routines cause the
scanner to pause for a set period of time while the
contacts settle before continuing.l]

By the way, most people have heard that cleaning the
contacts under the keys will decrease bounce. This is true
on the OLD keyboards; however, do NOT try to remove the
keycaps on the new keyboards. You would probably rather
spend the $250 on software.... Also, most of the new disk
operating systems have debounce routines build-in.

We need a bit more on scanning before we get to the
meat of keyboard interfacing. We have discussed how the
TRS~80 uses the eight addresses which have only one bit set

in the LSB. Anyone have a guess how we might use the other
addresses?

First of all, the 4wRS~80 ROM does not utilize the
other addresses under Level II. But, they can be used from
an assembly language procedure. First of all, let's lock
at the LSB of an address:

ClH = 1100 0001

The Keyboard

This LSB has bits 7, 6, and 0 set. This means that a scan
at a KEYMEM location with this LSB (i.e., 38ClH) would scan
for characters in rows 7, 6, and 0. For example, if the
value at 38ClH is 1001 0001 (91H), the keys pressed could
be G, D.A, and SFT. Of course, other combinations are
possible.

To test whether or not ANY key is pressed on the
keyboard, you can scan location 38FFH, Since all keys map
to this location (FFH = 1111 1111), if (38FFH)=0 then no
key is pressed. You may want to examine the lowercase
driver in Appendix B for a method of scanning and decoding
which allows auto repeat and specially defined keys.

KEYBOARD DCB

The keyboard DCB format is as follows for standard
TRS-80 Level II BASIC operation:

KEYDCB EQU 4015H ;KB DCB Location
ORG RKEYDCB

4015 01 KBTYP DEFB 01H :Input device
4016 E303 XKBDADR DEFW 03E3B ;Address KEYIN driver
4018 00 KBCONS DEFB 00H ;Keyboard constants
4019 00 DEFB 00B
4012 Q0 DEFB 00H
401B 4B49 DEFM 'KI!

To wuse an alternate keyboard driver, you would have to
change the driver address at location 4016H in a manner
similar to the following:

KEYDCEB EQU 4015H ;Keyboard DCB

KDBADR EQU KEYDCR+1 ;KB Driver address
LD HL,XKEYDRY ;Ld address new DRVR
LD (KBDADR) ,HL ;8tore new address
JP 06CCH ;Re~enter BASIC

KEYDRV XOR A :New Keyboard driver

; {(Loocks keyboard)
RET

The Keyboard

INTERPACING ROUTINES

The following assembly language interfacing routines
should be used to input characters from the keyboard. Use
care and note all special considerations listed. Prudence
dictates that you also refer to the disassembly at some
peint. This 1is necessary to best understand what is
happening inside the machine during ROM subroutine
execution.

Single Character Scans

The following routine scans the keyboard. If a new key is
pressed, the ASCII value of the key is returned. If no new
key is found, the routine returns an ASCII null
{(NUL = 00H).

KBSCAN PUSH DE ; Save 'DE!
CALL 002BH :Scan keyboard
POP DE ;Restore 'DE'
OR A :Set flags
JP Z y NOKEY :If value returned 1is
;:00H, no key found
JP KFQUND :A new key was hit.

You may also use another routine which does not require you
to save 'DE'. However, you must be careful when using this
routine under many DOS systems. At location 0358H, this
procedure does a CALL to 41C4H. This is what is refered to
as a "hook." Under normal Level II, 41C4H contains a C9H,
the opcode for RET. Under disk systems, this may be
changed to a Jjump to another routine, possibly causing
unpredictable results. Control of this area is left to the
programmer.

;Hook at 41C4H should be considered.

KBDSCN CALL 0358H ;Call the scan
OR A :8et flags
Jp Z yNOKEY ;No key found
JP KFOUND ;New key pressed!

2-10

The Keyboard

Single Character Inputs

The following routines scan the keyboard until a key
has been pressed and return the value in register ‘A.' A
possible problem with this looping is the system is "hung"
until a key 1is pressed [Note: The code returned for BREAK
is 01H. BREAK 1is used on most systems to interrupt
execution. However, on the TRS-80, the user's program must
detect the code for BREAK and operate accordingly.]

GETCHR PUSH DE ;Save 'DE!
CALL 0049H :Get a character
POP DE :'DE' restored

;Char. in 'A'

Ancther routine to input a character saves 'DE! but also
has a disk hook at 41C4H (the same hook as KBDSCN, since

this routine calls KBDSCN). Be sure to consider this hook
when using the following call.

;Hook at 41C4B should be considered.
GTDCHR CALL 0384H :Get a character

* * *

A note about the above routines; each of the routines
which scan the keyboard for a character do NOT display the
character on the screen; they only return the ASCII value
resulting from the scan. If these characters are to be
displayed as they are detected, the programmer must
specifically CALL another routine. You may want to refer
to the section in the next chapter on displaying single
characters on the video.

2-11

The Keyboard

Buffered Line Input

The routine BUFFIN can be used to input a
programmer~defined maximum number of characters into a
buffer. The routine displays each character on the video
as it is entered into the buffer. This routine 1is
especially useful since all of the standard TR5-80 control
characters can be used. For example, the 1left arrow
performs a backspace and erases the last character. The
CLEAR key erases the screen and the buffer. Shift left
arrow erases the current line. This is the same routine
that is used to input a BASIC text line. The interface is
as follows:

BUFFIN LD B,MAXCHR ;Input 'B' characters

; into a buffer of
; length 'B'+1

LD HI., BUFFER ;Point to buffer

PUSH DE ;'DE' saved

PUSH BC ; 'BC' saved

CALIL (5D3H 1Get buffer of chars.

JP C,BREAK ;Carry set if BRERK
; hit to end input

LD A,B :Save number of chars
s in buffer

POP BC ;Restore '"BC!

POP DE ;Restore 'DE'

As you will note from the above example, on entry to the
BUFFIN routine located in ROM at O05D9H, 'B' contains the
maximum number of characters to input into the buffer.
Special Note: The buffer MUST BE OF LENGTH 'B!'+1 since the
ending character [either &sNTER (0DH) or BREAK (Q1H)1 1is
placed into the buffer also. Upon return, the carry flag
is set if the input ended with a BREAK and 'B' contains the
number of characters in the buffer., 'HL' should point to
the beginning of the buffer both before and after
execution,

2-12

The Keyboard

There are other ways to interface with the ROM
routines to get input from the keyboard. However, the
routines outlined above serve most admirably and require
the least amount of preparation before making the CALL. You
may refer to the ROM disassembly for other less elegant
interfacing procedures that may be used to input from this
device.

This concludes the discussion of the keyboard. Now
that we have a method available to us to get data from you
to the computer, let's 1look at getting data from the
computer to you.

2-13

Output: The Video

The video display is the primary output device
used on the TRS~80. The screen is "driven” by a
Cathode Ray Tube (CRT) in the video display. The
electronic beam of the CRT travels from the top of the
screen to the bottom and from left to right. Each screen
consists of 264 scan lines. Of these only 192 scan lines
are used for the picture; seventy-two iines are used as
upper and lower boundaries. Nothing is ever written or
visible within these 72 1lines. Each screen consists of
either 1024 (400H) or 512 (200H) character locations,
depending on whether the machine is in 64-character or
32-character mode. There are 16 character 1lines, each
consisting of 12 scan lines. Each alphanumeric character
uses the upper seven of the twelve lines; the five lower
lines are used as blank scan lines to provide for spacing.
That's enough of the technical trivia~-on to the useful
stuff.

CHARACTER OQUTPUT

We'll cover character output first since it is fairly
straight forward; graphics output is more complicated.

When used for character output, the video should be
viewed as a simple 16 row by 64 column matrix. Each of
these locations corresponds to one of the members of the
video RAM area which begins at 3C00H and ends at 3FFFH.
This area 1is referred to as CRTMEM (The video is a
memory-mapped device addressed at 3C00-3FFFH). Bach row in
the matrix is 40H entries in length. Therefore, row 1 is
at 3CO0H-3C3FH, row 2 is at 3C40H-3C7FH, etc. A complete
breakdown of the rows by their beginning memory address
(begin), middle address (begin + 20H), and last address
{(begin + 3FH) is as follows:

3-1

The Video

Begin Middle Last
ROw 1 3C00H 3C20H 3C3FH
ROW 2 3C404 3Ce60H 3C7FH
ROW 3 3C80H 3CcAQH 3CBFH
ROW 4 3CCOH 3CEQH 3CFFH
ROW 5 3D00H 3p20H 3D3FH
ROW 6 3D40H 3D60H 3D7FH
ROW 7 3paon 3DA0H 3DBFH
ROW 8 3DCOH 3DEQH 3DFFH
ROW 9 3EQQH JE20H 3E3FH
ROW 19 3E40H 3E60H 3E7FH
Row 11 3E80H 3EAQH 3EBFH
ROW 12 3ECOH 3JEFEOR 3EFFH
ROW 13 3FQ0H 3F20H 3F3FH
ROW 14 3F40H 3F60H 3F7FH
ROwW 15 3F80H 3FAQH 3FBFH
ROW 16 3FCOH JFECH 3FFFH

The video RAM is written to and read from in the sanme
manner as regular memory. The actual memory consists of
8 static RAMs which do not require refreshing. To display
any printable ASCII character on the screen, simply place
the code for the <character into the video memory. The
video generator will do the rest.

Remember, all ASCII characters are not printaple. If
you were to place in video memory the ASCII value for a
nen-printing character, a backspace (08H) for example, it
would not cause the intended action on the screen.
Instead, it would display as an "H" (48H). It 1s stored in
the wvideo memory as a 08H, but the video generator displays
on the screen the ASCII equivalent of 48H.

This 1is the case on most new machines with lowercase
capability built in. However, on the early machines ({(ones
without the 8th static RAM for bit 6), the computer uses
another method of determining the value of the sixth bit.
On these machines, if both bit 5 and bit 7 are off, then
bit 6 will be high. This means that for values placed into
the video RAM of a magnitude 1less than 20H, bit 6 of the
byte will be set (the equivalent of adding 40H). For this
reason, you should not use video RAM for data storage.

The Video

Example:

O0lH = 0000 0001 placed at 3COOH on a machine without
the bit 6 static RAM becomes
414 = 0100 0001

Now that we have covered the basics of printable
character output, let's discuss the TRS-80's graphics.

GRAPHICS OUTFPUT

The video screen when it is used for graphics display
may be broken down to 6144 ©positions arranged in a 48 row
by 128 column grid. Each positicn in the grid defines a
pixel (picture block, sometimes called a graphics block)
three dots wide by four lines high. When compared to the
character format, the area on the screen which is occupied
by one character may be broken down into six pixels
{2x3 block). Each of these pixels may be turned on or off
independently of the the other pixels, We will number the
pixels located in one RAM location in the following manner:

0 1
2 3
4 5

But how do we control each pixel? Let's look at the
binary value retrieved from the video memory. This value
is from a block with all of the pixels on:

BFH = 1011 1111

Bach of the lower 6 bits (b0-b5) correspond to one of the
pixels. Bit 6 is unused. Bit 7 is used as the ‘“graphics
indicator™; when this bit is on, the lower six bits are
used to determine whether a pixel is on or off, As you
might have guessed, bit 0 corresponds to pixel 0, bit 1
matches with pixel 1, and so on. Gee, that's pretty
logical.

For a complete 1list of graphics characters and their

hex and decimal values, you can refer to Appendix E in the
back of the book.

3-3

The Video

Since bit 7 determines whether the bits are used to
define a graphics block or a character block, you cannot
have a printable character and a graphics character
corresponding to the same address in the video RAM. To
display a character, bit 7 must be off. To display
graphics pixels, bit 7 must be on. Obviously, we cannot
have both.

You may be familar with the SET and RESET instructions
in BASIC. Using these commands, you can set {"turn-on") or
reset ("turn-off") any individual graphics block on the
video screen. The assembly language code for these
commands is not as simple as just "set this block" or
"reset this block." The software must calculate which of
the 1024 locations must be used for an individual pizxel.
- How might this be done?

First of all, the row number (0-47) is divided by
three and the integer result is multiplied by 40H ({the
length a row). This value is added to the column number
divided by two. This produces the relative offset of the
byte to be used (add 3CO00H to produce the address). The
remainder of the row division (0, 1, or 2) 1is used to
determine the row within the block and the remainder from
the column division (0 or 1) is used to determine the
column position. If you are interested 1in the assembly
language code which performs these functions, it is located
in ROM from 0132H to 019BH.

3-4

The Video

Here 1is a short little routine which demonstrates some
of the above concepts:

This assembly language routine will

scan the video memory, picking out the graphics
characters, setting the blocks which are off

and resetting the blocks which are on.

By repeating the routine again, the original values
are restored.

LI T TR T

FLASH LD HL,3CO0H ;Pt. to beginning of
; the scCreen
LD BC,400H 11024 locations
CLOOP LD A, (HL) ;Check character f£rom
; the video RAM
BIT 7,A :Test graphics bit
JR 7 NEXT ;If off, not graphics
CPL :Turn 1's to 0's and
; O0's to 1's
CR 808 :Set bit 7 (graphics)
LD (HL) ,A ;Place back in RAM
NEXT INC HL ;Next RAM location
DEC BC ;Dec location count
LD A.B ;Get MSB of count
OR C ;Test '"BC' for Zero
JR NZ ,CLOCP ;Loop if not done
CALL 0060H ;Delay CALL
JR FLASH :Loop again, flashing

; the graphics on the
; Screen,

As you will recall, each of the 1024 elements of the
video screen can be individually defined as either a
graphics character or a printing character; it is
determined by the status of bit 7--on for graphics, off for
characters. To control each of the pixels in a
6-pixel-block, you can set or reset bits 0-5.

Now that we have the basics of programming the video
display, on to the interfacing!

3-5

The Video

[ol

AL “ R o T
o s
Qe v

A

s

The Vvideo

VIDEO DCB

The video DCB format is as follows for standard
TRS-80 Level II BASIC operation:

CRTDCB EQU 401DB ;Video DCB Location
ORG CRTDCB
401D 07 CRTTYFP DEFB 07H ;Output, Input,

; and Control Type
401E 5804 CRTADR DEFW 0458H :Address VIDEO driver
4020 003C CURPOS DEFW 3CO00H ;Cursor position
4022 00 CURCHR DEFB 0 ;Character at cursor
4023 444F CRTCON DEFM 'DO! ;:Video device name

To change the address of the video driver, you could modify
the contents of CRTADR (401EH), placing the address of the
new driver at that location.

The video driver maintains the position of the cursor
on the screen (3C00-3FFFH). The position is steored at
locations 4020-4021H in standard L,H format. I[L,H format is
used for storing WORDS (2 bytes long} in memory in
LSB-first, MSB-second order. L,H refers to the order that
the register 'HL' would be stored in the instruction
LD (ADDR) ,HL. 'L' would be stored at ADDR; H would be
stored at ADDR+1l. You can also remember L,H as LOW,HIGH.]

CURCER 1is used to save the <character that is ‘“under
the cursor.” As the <cursor moves across the screen, it
"covers" a character as it moves into the next position.
The driver takes the byte stored in the address where the
cursor 1is displayed, stores it in <CURCHR, and replaces it
with a b5FH (the <cursor character}. Wnen the cursor
continues, the cursor character is replaced by the original
contents.

The Video

INTERFACING ROUTINES

The following assembly language interfacing routines
should be used to output characters and graphics to the
video. You may want to refer to the disassembly at some
point to firm up your Kknowledge of the video and its
drivers.

Single Character Output

The following routine takes the <character in 'A' and
outputs it to the video at the cursor position (defined by
CURPOS at 4020-4021H). Since .e are accessing a video
driver by wusing this routine, we can now specify the
special control codes {(0l-1FH). These codes are NOT placed
in the video memory, but cause some cursor or screen
action. For example, if we send the backspace character to
the wvideo driver, the cursor will backspace one character
position and erase the previous character (unless it is
already at the beginning of the screen). PFor a full list
of these codes, refer to Appendix D.

CRTBYT PUSH DE ;Save ‘DE!
CALL 00338 ;Output the character
; stored in 'A!
POP DE :Restore 'DE!

The following interface is probably the best to use
since it maintains the cursor position indicator at
40A6H (CRTPOS). This 1is the routine used most often by the

ROM. The 'DE' registers are saved by this routine also.
The interface is as follows:

CRTOUT LD A,CHAR ;Load display char.
CALL 033AH ;Output the char.
:CRTPOS(40A6H) is up-
; dated automatically

The Video

A routine that 1is often used in conjunction with the above
interface is POSIND, which returns the current cursor
position on the line in the 'A' register. This routine
compensates for double width characters.

POSIND CALL 0348H ;Determine pos on CRT
LD {40A6H) ,A ;Store position in
; CRTPQOS

Remember, the above routines can be used to send control

codes, printing characters, graphics characters, and the
space compression codes. The wvalue sent to the driver is
interpreted by it, and the request is handled accordingly.

Clearing The Screen

The easiest way to clear the =creen is to make one
51mple call to the CLS routine as shown below:

CLE PUSH AF ;1Save '"AF' if need be
CALL O0I1C9H ;Clear the screen
POP AF iRestore 'AF'

Note: When the screen appears clear, it is actually full
of spaces (20H's).

SET, RESET, and POINT

It is not easy to interface to the ROM
rqutines SET, RESET, and POINT due to several interactions
with other ROM routines. However, with the information

given above regarding the workings of the video and with
the ROM routines at 0132-019CH as a guide, it should be
easy to write a routine which better suits your needs. If
you wish to use the routines, you mnmay refer to our
modification of the SET, RESET, and POINT sections in
Appendix F.

The Video

Input From ¥Videog

As mentioned in chapter 1, it is possible to input
from the video. By performing a CALL to INBYT when the
video DCB has been specified, the character at the cursor
position on the screen is returned to the user as follows:

LD DE,401DH ;Specify video DCB
INRYT CALL (0013H :Get byte from cursor
; into 'A' register.

The value retrieved depends on whether the cursor is on or
off. If the cursor is on, the value which is stored in
CURCHR is returned in register 'A'. If the cursor is off,
'A' will contain the value in the video RAM address
specified by the cursor location on screen (CURPOS).

The video display is used for most output; however,
there are times when we would like to print output from our
TRS-80. 1In the next chapter we will discuss interfacing a
parallel printer to a TRS-80 Level II.

3-10

Output: The Printer

The standard Level II TRS-80 comes with a keyboard
unit which contains the CPU and the major processing
hardware. In addition to the keyboard, one is supplied
with a video display and a tape unit. This set-up works
well, to a point. A major drawback is that to take data
from one place to another in a form that can be read by
human eyes, you have to be able to get a printout of the
information on paper. For this purpose, most owners have
purchased or are considering the purchase of a printer. In
this chapter, we will discuss assembly language control of
a parallel printer.

When the TRS-80's first appeared, the owner had to
purchase an Expansion Interface for $299 dollars before he
could attach a printer to the Level II system. Recently,
Radio Shack has added new cables to their line which allow
the direct connection of a parallel printer to a
TRS-80 Level II. [For the exact catalog number of the
cable for a specific printer, you can contact Radio Shack
or refer to their catalog. Most printers will use either
26-1411 or 26-1416.

The ROM has a driver built in to support a parallel
printer addressed (memory-mapped) at LPTADR (37E8H). The
driver uses ROM at (058D-05D8H. It is a very simple driver,
but it does work for most Centronics—-type parallel
printers. For a more sophisticated printer driver, you may
refer to the assembly language listing in Appendix H.

Why was the parallel interface chosen? in the words
of Radio Shack, "This interface type was chosen because it
is a widely wused industry standard, is reliable and is
easily implemented. " This statement is essentially
correct. The parallel interface for the TRS5-80 1is very
reliable. For this reason, one should probably purchase
one of the many parallel printers on the market, by-passing
the serial printers. Many owners of serial printers have
found that using the RS232~C and having to load a driver
every time they wish to print anything to be frustrating.
The ROM has a built-in parallel driver; a separate driver
is needed to operate a serial printer. An application in
which a serial printer 1s necessary is one that requires

4-1

The Printer

that input from an external printer be entered into the
computer via the RS8232-C.

LINE PRINTER STATUS

The 1line printer port (37E8H) has four status bits.
These bits show the conditions busy, out of paper,
device selected, and no fauit. The corresponding bits are
as follows:

Status 1f bit set

BUSY

QUT OF PAPER
DEVICE SELECYTED
NO FAULT

F
d= Oy ~d u
+

BUSY means that the printer 1is unable to accept any data.
This condition can occur when the printer is off, has a
full buffer, is printing a line, is out of paper, or 1is
just not prepared to print because of some physical
condition such as no ribbon or the top is up.

OUT OF PAPER is self-explanatory. When the printer switch
(if one is present) detects that the paper 1is out, the
printer sets this bit. The expansion interface takes this
status and ORs it with the BUSY bit. Therefore, if the
printer is out of paper, it will also be busy. However,
contrary to RS documentation, if the printer 1s shown as
busy, it will not necessarily show as out of paper.

DEVICE SELECTED is incorrectly documented in Radio Shack
literature. This bit is used to show whether the printer
is ONLINE ({(connected and in remote mode, ready to receive
data from the computer). It is used, along with NO FAULT
by the printer driver in ROM, although the latest
documentation out of Tandy says that it is not.

NO FAULT is a bit that signifies whether an error condition
is present 1in the printer (paper out, etc.). It 1is a
logic-1 flag, as 1is DEVICE SELECTED, which means that it
must be on to signify that the printer is ready to receive
data.

The Printer

The routine in ROM which checks for printer ready is
as follows:

PSTATU LD A, (37E8H) ;Get printer status
AND QFQH ;Clear low bits
cp 30H ;If ready, 2 flag set
RET

Now, let's Jlook at the format of the printer DCB before we
get to the interfacing.

PRIRTER DCB

The format of the line printer DCB as it is initially
set by the Level II bootstrap is as follows:

4025 01 LPTTYP DEFB 06H Printer=0utput

; and control codes
4026 8D0S5 LPTADR DEFW O058DH :Driver address
4028 43 LPTLPP DEFB 67 ;Lines/page
4029 00 LPTLC? DEFB 0 :Line c¢ounter
4024 00 LPTCON DEFB 0 :Printer constants
4028 5052 DEFM 'PR'

Radio Shack incorrectly set the number of lines per page at
67 in ROM. The correct setting should be 66 for standard
8.5 x 11" paper. If the ROM driver is to used to skip to
the top of page upon receipt of a control-L <FF=0CH>, you
should correct this setting using a POKE 16424,66. It
would be nice to change this value permanently, but all DCB
values are copied from ROM to RAM at power-up.

The line counter is maintained by the driver. It 1is
incremented once after every carriage return or linefeed.
This value is used in conjunction with the number of lines
per page to determine how many linefeeds should be issued
to advance to the top of the next page when a formfeed is
received,

The Printer

INRTERFACIRG ROUTIRES

routines can be used to access the
Remember, these routines
BASIC when using the

The following
parallel printer driver in ROM.
suffer £from the same problem as
printer; if there is not a printer present, the system will
"lock-up." To avoid this, you may want to create a
"NULL DRIVER" if the printer is not present. In assembly
language, the format is as follows:

NOPRNT LD A,0DOH ;LSB of a RET inst.
LD (4026H) ,A ;jChange driver addr.
RET :Printer off
To get it back:
PRNTON LD A,8DH ;LSB of driver addr.

LD {4026H) ,A ;Restore 01d driver
RET +Printer now on.

In BASIC:

'Printer off
'Printer on

1000 POKE 16422,208
2000 POKE 16422,141

By turning the printer into a null device, you will not

lock-up the
better method

printer driver which checks the status of the printer, and
if the user holds down the <CLEAR> Kkey, do not send the
byte to the printer driver. A possible routine follows:

ORG 40268

DEFW CEPRNT ;Set new driver

ORG 7FEQH ;Possible CRG addr.

CKPRNT LD A, (37E8H) ;1Get status

AND QFO0H ;Mask low order bhits

cp 30H ;Ready?

JFr Z ,058DH ;Goto printer driver

: if printer ready

LD A, (3840H) :Check for clear

BIT 1.,a :Test for <CLEAR>

RET NZ ;Return if pressed

JR CEKPRNT ;Loop until ready

computer if the
is to write

printer
a small 1lead-in routine to

is not present.

the

The Printer

Single Character Qufput

The following routines output the character stored in
register 'A' to the printer. Remember to consider system
lock—~up when using these routines.

PUSH DE ;1 Save 'DE!
LPTBYT CALL 003BH ;Output 'A' > printer
POP DE ;Restore 'DE!
This next routine also saves the 'DE' registers and

maintains the current line position (number of characters
sent to the printer in the current line) at LPTPOS (409BH).
This 1s the routine used by BASIC which changes all
linefeeds to carriage returns.

LD A,CHAR ;Load print character
LPDCHR CALIL, 039CH ;Output to printer

These are the only two ROM routines which specifically
support the printer. The printer is one device for which
you will probably want to use a more sophisticated driver.
It would be wise to refer to the printer driver in ROM for
hints and programming techniques.

We have now discussed the Kkeyboard, video, and
printer. Cnly one more device remains. In the next
chapter, we will fully discuss the mysteries of the tape
unit, how to use the ROM tape routines, and how to write
your own tape driver.

P
= PN IR Wi
_ Sy)

‘ Ty ey
o Ele
. I 5 -
_” gt
-

OA'
N Nt
Y D
R 1
INAEAR D
RSN 3
0 ; ;
= 5\:-.';-.\\\ ki 1)
-l \\;\‘ .
N Cund T
\\\h\ Yy o X 3
RN 5 '
NBLAH : : p
I~ ll\? Ty : .: ‘: 'II
; D . R %‘l‘ ’t)
1) sl v
|: ‘
é 1]
il
‘ 4

Input/Output; Tape

To the first-time user, the tape unit is the device
which causes the most confusion and frustration. All we
know when we buy a TRS-80 is that if we type CSAVE, our
program (which we know is stored as numbers) is converted
to sound on cassette tape. Then, we type CLOAD and
sometimes it loads correctly, and sometimes it doesn't.
Furthermore, we buy a program, and after 27 tries at
getting the proper volume, we give up hope. Is it the
tape? 1Is it the recorder? Is it the computer? e don't
even Know what is happening! This chapter is designed to
answer these questions and to give a complete explanation
0of the tape unit. After reading the following material,
you still may not be able to load that tape, but at least
you will know some of the causes.

TAPE HARDWARE

As a hardware device, the tape uses a latch (see
explanation below) which 1is accessed through %80 port OFFH
(255). The use of the various bits depends on whether the
operation is an QUT or an IN. Let's cover OUTput first.

Upon output to port OFFH, the hardware takes the upper
four bits and discards them. The lower four bits are used
to control the video format, the cassette motor, and the
cutput voltages as follows:

Bit Output to port FFH use

3 Video Display Mode Select
1=32 char./line
0=64 char./line

2 Cassette motor relay
1=0N
0=0FF

1 CASSOUT B Signal

0 CASS0UT A Signal

The Tape

The output signals defined by CASSOUTs A and B are def ined
as follows:

CASS0OUT Odtput signal

B
0 0 No signal (0.46V)
1 1 Low signal (0.00WV)
0 1 Low signal (0.00V)
1 0 High signal (0.85V)

Input from this port uses only the +two highest bits.
Bit 7 is used for cassette input (the decoded CASSIN signal
is latched here until the software clears 1it). Bit 6
is used to indicate the Display Mode (0 = 32 char.,
1 = 64 char.). The reset of the bits are set to l's.

The pinouts (for what each pin 1s wused) are not
necessary for using the cassette tape, but are provided for
informational purposes. If you look at the DIN plug,
facing the pins toward you, they are numbered from left to
right:

Pin Signal-Name Description

1 MOTOR ON/OFF <Controls tape motion

2 GROUND Signal ground

3 MOTOR ON/OFF Controls tape motion

4 CASSIN READ signal from tape

5 CASSOUT WRITE signal from TRS-80

The Tape

One other bit of hardware is used with the cassette,
but only if you have an expansion interface. If you have
one, you may define select between the two possible
cassette drives by outputting to 37E4H. If you wish to
select drive 1, use:

X0R A ;iReset bit 0
LD (37E4H) ,A ;Select drive 1

To select drive 2, use:

LD A,01H ;Set bit O
Lb (37E4H; ,A iSelect drive 2

Now that we know the hardware, let's look at the
software that is used to control it.

TAPE SOFTWARE

As stated in chapter 1, the tape unit does not use a
DCB. It does have one RAM byte which is used as a status
flag. It is CSTATU, and is located at 403DH. Tt is a
mirror 1image of the last byte OUTput to port FFH. It
is used as a flag to determine whether the <cassette
is on and whether the machine is in 32-character or
64~character mode. It is also used to clear the
Cassette Flip-Flop (CFF). Let's look at how information is
written to tape.

Write Data

Data is written to the tape one bit at a time. For
each bit of data, there is one clock bit which is used to
synchronize the software. One bit is written to tape by
sending a high signal (A=1,B=0) followed by a low
signal (A&=0,8=1). [The bits are written as a single cycle
of a square wave with a period of 265 microseconds {a
frequency of just under 4 kHz)l. This 1is followed by the
"no signal” for about 735 microseconds. The total time is
about one millisecond. This 1s for one bit. This bit does
not necessarily represent data, just a bit. Well then, how
do we get a bit of data on the tape?

First, we send the clock bit. This bit is going to be
used by the read routine to signal that a data bit follows.

The Tape

The next operation depends on whether the data bit to be
written is a one or a zero. If it is a zero, we simply
delay for one millisecond. If it is a one, we write
another bit to the cassette. Simply, the presence of a
pulse on the tape following a clock pulse denotes a 1; if
no pulse is present, the data bit is a 0. Data is written
to the tape as a constant stream of clock bits, foilowed by
either a pulse to mean a one, or no pulse to mean a zero.

As one should see, to write a byte, the software must
repeat above procedure eight times, once for each bit.
For a byte, the bits are written 1in decreasing order
(7,65,-...,0). Also, since it take 2 milliseconds to write
or read each bit of data, the tape can process a total of
500 bits per second or 62.5 bytes/second.

All bytes for all the different tape formats supported
by the ROM are written in this manner. The problem is
reading what has been written. Unfortunately, this 1is
where the errors come in....

Read pata

The reliability problems associated with the cassette
come from many areas. First of all, the cassette recorder
is of very low quality. And, as with all recorded
material, the media plays a very important role; cheaply
made tapes do not work as well as better gquality ones.
[Note: the actual price you pay has little to do with the
guality. For example, some stores discount high quality
tapes which gives them a low price tag, many times less
than "garbage" tapes.] But the biggest problem is timing.
In the older ROMs ("MEMORY SIZE?"), the section to read a
bit from the cassette did not wait 1long enough for the
pulse to be detected before continuing. Therefore, data
bits that should have been 1's were read as 0's. The new
machines ("MEM SIZE?" have increased the timing delay by
iboui 100 microseconds for the data bit (if present) to be

atched.

We've mentioned "latch"™ here, but you haven't been
told what one is. Electronic signals such as the pulse
read from the cassette do not "stay around.” They are
present for only a brief time (brief even in relation to a
microsecond). Therefore, 1t must be latched. If the
gignal goes high, it sets the latch which stays high until
it is reset by the software. The reset of the cassette
latch is done by doing an OUT to the cassette port. The

5-4

The Tape

ROM routines wuse CSTATU and simply output its value. The
routine CLRCFF at 021EH performs this function after every
bit is read.

In addition to the above problems, tape reading errors
can be caused by a bit being dropped (lost) from the tape.
If the tape is exposed to a magnetic field, it will almost
certainly lose at least one bit. Unfortunately, there is
no way to recover such a loss.

The interfacing to the tape read and write routines
are given after the discussion of tape formats. A very
good reference for the actual decoding of the audio signal
is given in the TRS-80 Technical Reference Manual
(Catalog 26-2103),

TAPE FORHMATS

There are four different tape formats that are used by
the computer. These are the BASIC language source tapes,
the SYSTEM tapes, BASIC langauge data tapes, and Assembler
source tapes. There are of course other tape formats
written by non-Radio Shack suppliers of software. These
will not be discussed here.

In order to assure synchronization at the beginning of
the tape, a leader of 255 bytes of zero is written. Since
a zero byte will only have clock bits occuring on the tape,
by waiting until a pulse iz detected, the tape reading
program is guaranteed to find a clock bit rather than a
data bit., Following this synchronization, the TRS-80 will
wait for a clock bit before each data bit. This
compensates for motor speed fluctuations. This same leader
is written out at the beginning of each tape format
described in this section.

While reading the leader, the tape program shifts each
new bit into the accumulator at the low end and checks the
new value in the accumulator. This is done until TA?
contains the value A5H (10100101 - a symmetrical bit
pattern). This synchronization byte is used to mark the
beginning of the data bytes on these tape formats.

BASIC PROGRAMO

The £first tape type we will discuss 1is the one
produced by the BASIC command CSAVE. Following the ASH

The Tape

there are three bytes of D3H to indicate the tape type.
This is followed by the single ASCII character that was
specified following CSAVE (the name of the program). This
in turn is followed by a series of program lines in the
following form.

First are two bytes representing a pointer to the
memory location that the 1line following the present one
occupied at the time of CSAVE. This is followed by two
bytes that contain the binary representation of the line
number. Next come a variable number of ASCII bytes that
represent the actual text of the BASIC statement line with
compressed keywords. The end of the line is marked with a
byte of zero (00H). There is one of these constructs for
each 1line of the BASIC program. To indicate the end of the
program, there are two bytes of zero.

Note that no error checking is performed! Therefore,
one has no way of knowing whether the tape was loaded
correctly except by doing a CLOAD? which takes up a lot of
time if it is a long program. This format is definitely a
drawback. Microsoft should have used a diferent format.

if you have a disk system, you should note that the
addresses placed on the tape are those that were in the
program at the time it was CBAVE'd. Since the BASIC
interpreter places the line in the appropriate memory
location, you can read tapes under Disk BASIC that were
written under Level II BASIC and vice versa. However,
CLOAD? will always report a faulty 1load if transfering from
one BASIC to the other.

DATA TAPES

The data tapes produced by BASIC are quite simple.
After the leader and sync byte, the data 1is present as
ASCII with a leading blank or minus sign and a trailing
blank for numeric data. Individual items are separated by
commas. Fach PRINT# statement generates a new leader and
sync byte.

Again, no checksum is used! If you are doing BASIC
programming and use the tape to store and retrieve data, be
sure to add some error checking or data validity routines.
If you don't, you may be very surprised by the results.

The Tape

YSTEM TAPES

The SYSTEM tapes have a much different format than
either of the preceeding. Following the leader and sync
byte, there is a 55H byte that is the header for the tape
name. The name field 1is the next six bytes in which the
ASCII name is left justified and padded with blanks if it
1s less than six characters long. Following the name are a
variable number of records which c¢an be of variable
lengths. The records are formed as follows.

The £first byte of each record is a 3CH. This is
followed by a byte that contains the length of the record
{(a zero means the record is 256 bytes long). Next come two
bytes in LSB/MSB order which is the starting memory address
where the <current record should be stored. These are
followed by the data bytes as specified by the length. The
final byte is the checksum which is the sum of all the data
bytes and the memory address (if this byte does not match
the calculated value, the SYSTEM loader in ROM will place a
'C' in the upper corner, but it continues to load records.
This at least gives some visual indication that the tape is
bad}). This format 1is repeated as many times as is necessary
to load all the data. The end of the tape is signaled by a
three byte trailer starting with 78H. This is followed by
two bytes in LSB/MSB order which «contain the transfer
address of the program. You may wish to refer to the
alternate SYSTEM loader in Appendix C.

ASSEMBLER SQURCE TAPES

These tapes start with a D3H byte following the leader
and sync byte., This is followed by @ six byte ASCII name
field. The text lines follow.

Each 1line has a five byte line number in ASCII format
with bit 7 set to differentiate these line numbers from
other numbers in the text. Next there 1is an ASCII
space (20H). This 1is followed by &the ASCII text and
finally by a carriage return (ODH). This format 1is
repeated for each line. The end of the tape 1is indicated
by a 1AH. Once again, no error checking is performed.

The Tape

IRTERFACING ROUTINES

The following 15 ROM interfacing examples cover all
the reading and writing of data to the tape unit, and
includes the control of the cassette recorder.

Cassette Recorder and Latch Control

The following routine turns the cassette drive 1 on.
First it does a check on the character at (HL) to see if it
is a pound sign (#). If it is not, drive 1 ® (which is
selected by outputting a O0O0H) is turned on. If it is a
pound sign, the number starting at (BL+l) is converted to
an integer. A syntax check is then performed for a comma.
Then the integer value is converted to a drive number. If
the driver number 1is invalid, Illegal Function Call
results. Take care when using this routine that HL does
not point to a stray pound sign, or you may find yourself
in BASIC.

PUSH HL ;Save ‘HL'
LD HL,0 :Point HL to safe loc
CTON CALL O1FEH ;Turn cassette drive
: Onh.
POP HL
RET

This routine defines the drive in register 'A' (Drive
number =1) by outputting to the cassette select latch. It
then turns on the drive.

LD a,l :Drive 2
DEFDRY CALL 0212 ;Define drive 2.
;Drive on
RET
LD A0 :Drive 1
DEFDRV g%%L 0212 sDefine drive 1

‘ This routine turns the cassette off. The accumulator
is used and must be saved.

PUSH AF ;Save 'AF'
CTOFF CALL 01rF8H ;Cassette off

5-8

POP
RET

AF

The following code clears
simply outputting the value stored in

PUSH HL
PUSH AF
CLRCFF CALL (021EH
POP AF
POP HIL

the cassette

The Tape

;iRestore 'AF?

flip-fliop by
(CSTATU) .

;Save *HL!
;1 Save 'AF!'
;Clear CFF
;Restore 'AF?
:Restore 'HL'

The CLRCFF routine uses the STATFF routine at 0221H to
make the change. STATFF takes the wvalue in (CSTATU), ANDs
it with 'H' (to reset any bits}) and ORs it with ‘L' (to set
any bits). It then saves the result in (CSTATU) and
outputs the result to port FFH. This routine is used to
change the voltage levels, turn the drives on and off, and
turn on or off display modes. The values to load into HL
are as follows:

EISIG D BHL,0FCC1H ;High signal
LOSIG LD HL, OFCO2H ;Low signal
NOSIG LD HL,0FCOO0H ;No signal
QFFC LD - HEL, O0FBOCH ;1Cassette off
ONC LD HEL,0FFO04H ;Cassette on
RLATCH LD HL,OFFOOH ;Clear CFF
M64 LD HL,O0F700H ;64-char mode
M32 LD HL,OFF08H ;32-char mode
To use the routine, select the appropriate value of HL
{(STATHL) from the above list and make the CALL:
PUSH HL :Save 'HL'
PUSH AF ;Save 'AF!
LD HL, STATHL : 8L, Command Selection
STATFF CALL 0221H ;Change status
POP AF :Restore 'APF!'
POP HL ;Restore 'HL!'

The Tape

Tape Reads

The following routines are used to read from the
cassette. Included are routines used by the read-tape ROM
sections.

This interfacing routine will turn the cassette drive
on using CTON and read the leader until a sync byte (ASH)
is found. Then, the stars are placed in the upper
righthand corner of the screen at locations 3C3EH-3C3FH.

PUSH HL ;8ave T'"HL'
LD HE, O :1Save (HL} for CTON
CTONRI, CALL 0293H ;Drive 1 on,

; read leader
; put stars

POP HL :Restore 'HL'

The CRLDR routine is part of CTONRL but the entry to
this routine is after a drive has been defined. Use the
following linkage:

PUSH DE ;Save 'DE’
EX DE,HL ;HL to DE
LD HL,RETADR :Load a return addr.
PUSH HL ;Save return address
PUSH DE :Save ¢ld HL.
: will be restored by
: routine
CRLDR JP 0293H ;jRead leader for sync
; put stars
RETADR POP DE ;Restore 'DE!

The ROM does have a routine o put the stars in the
corner, but if you do not use one of the above routines to
read the leader, you must put them there yourself using:

CSTARS PUSH AF ;Save 'A!
LD A,1*!? ;Star
LD (3C3EH) ,A :Put first star
LD {3C3FH) ,A :Put second star
POP AF

5~10

The Tape

This routine reads the data bit following a clock bit
and shifts it into the low order end of 'A'.

PUSH HL ;Save 'HL?
CRBIT CALL 02418 ;Read a bit into 'A!
POP HL

The linkage that follows reads a byte from the tape
into the 'A' register.

CRBYTE CALL (235H :Read a byte

To change the star in the corner from a blank to star
or from a star to blank, simply:

PUSH AF 1Save 'AF!
CSTAR CALIL 022CH :Change star
POP AF

Tape Writes
The following routines write data to the tape unit.

To turn the cassette on using CTON and write a leader,
use the following interface:

PUSH HL 1Save 'HL®
LD HI, 0 :Safe (HL)
PUSH AF :1Save 'APF!
CTONWL CALL 0284H ;Write leader & sync
POP AF :Restore 'AF'
POP HL ;Restore 'HL!

If the drive has already been turned on, you can use:

PUSH AF 1 Save '"APR!
CWLDR CALL (0287H :Write leader & sync
POP AF ;Restore ‘AP’

To write a bit, you may use the following code:

PUSH HL

The Tape

PUSH BC
PUSH DE
PUSH AF

CWwBIT CALL 01DSH sWrite a bit
POP AF
POP DE
POP BC
POP HL

To write the byte stored in register 'A' to the
cassette tape, call the CWBYT routine at 0264H. All
registers are saved:

CWBYT CALL 0264H ;Write a byte to tape

A sister routine at 0261H (CW2BYT) simply writes the byte
to tape twice using CWBYT.

This completes our discussion of the individual I/0
units of the TRS-80. The ROM disassembly of the routines
follows in chapter 6. Additional information on /0
routines may be found in chapter 7 and chapter 8.

5-12

ROM Disassembly

In this chapter, you will find a commented disassembly of the
Radio Shack Level II ROM input and output routines. However, a few important
points must be made about this disassembly.

First of all, the ROM code is the property of Microsoft and is protected
by their copyright. For this reason, it 1s impossible to provide a complete
disassembly of their code without violating their rights. For this reasomn, the
publisher has decided to provide the hex addresses of the instructions, the
operators, and the extensive comments. The hex object code and the operands
are omitted.

If you are an owner of a TRS-80, vyou are able to procure the full
disassembly by using one of wmany machine language disassemblers available
commercially, or if you have purchased Volume I, you can use the BASIC language
disassembler found in Appendix C of that volume. Space has been provided so
that operands can be written in next to the operators to provide a commented
listing that can be used for reference.

Secondly, since a full interfacing guide is provided in the earlier
chapters, it is unnecessary to refer to this listing in order to interface with
the routines. Nevertheless, this chapter may serve as a wuseful too] when

programming 1/0 on the TRS-80.

6-1

Rom Disassembly: I/O

B e e
B e e
3%% Radio Shack Level II BASIC ROM as Commented by %%
;¥% Insiders Software Consultamts, Inc. This is a *%
;** pseudo~disassembly which does not contain op— *¥
% codes or operands to protect the proprietary *¥
*¥% gource code of Microsoft, the original author **

*% of the BASIC Interpreter. *%
Tt T T e e T T T b e e e e e e e

I T T e e e e e T e o e

W W W ws

“

s IRERRRTEEY
;¥ CBOOT: Upon imitial power-up, the executiom of an illegal opcode,
3% or a JP to location 0000H, the machine will boot.
3% This entails a reset of certain key RAM locatioms,
3 ¥ a reset of I/0 devices such as the printer and tape,
3® and a re-entry into the BASIC interpreter with all
e pointers reset.
s HaR R IR
0000 CBOOT DI ;Disable interrupts during boot.
0001 XOR ;Reset Accumulator
0002 JP ;Exit to COLDSTART routine
0005 JP ;Unused in Level II
1In some machines, CALL 5 is used
;as a procedure request entry
spoint, similar to CP/M. In the
;TRS-80, it is not used,
s R A IR R AR
3% RST08: This RST is used by the parser to check the syntax of the BASIC
¥ program. This RST vectors to 4000H which in turn jumps to
;¥ location 1C96H under normal Level II operation.
RERREEEREK
008 JP ;R8T 8 Vectors to 1CY96H IN LII
s ek kb
;% WHERE: This routime is used to locate the execution location in memory.
3% For example, if one wanted to determine whether the current
3¥ routine is running in high memory after a relocation, one could
3F CALL WHERE and then check the contents of the HL register.
Fhd {HL. contains the address of the next instruction after
¥ CALL WHERE).
s FRAFIREIE,
0008 WHERE POP ;Locate self in MEM
000cC JP
000D DBOCT JP 3+JP Disk Bootstrap

0010

0013
0014
0016

0018

001B
401c
0C1E

0020

0023
0024
0026

Rom Disassembly: I/0

JFEIR I RS
;% RST16: This RST is used by the parser to process through the text

3 ¥ buffer finding the next character to be processed. Returns with
Hd the character in the buffer pointed to by HL. Carry flag

¥ set on ASCII 0~9. Zero flag set on colom (:) or binary zero.

3% Skips tabs, linefeeds, and spaces. This RST vectors to 4003H
] which in turn vectors to 1D78H.

TR R

w

R8T16 JP ;RBT 16 Vectors to 1D78H

sEAARRARREN

?
;¥ INBYT: Input a byte from a device. At this point, DE has been loaded
* with the DCB locatiom. BC is saved. DE is lost. B is loaded with

3¥ the operation type flag which is compared with the DCB to check
33 for valid I1/0 requests,
s IRk
INBYT PUSH ;Ioput a byte from a device
LD ;B with DCB type (Input)
JR ;JP 1/0 Driver
JFRE R
3* RST24: This RST is used to compare the values contained in the HL and
5 DE registers. (16 bit compare) If HL=DE, Zero set. If HL<DE
¥ then Carry set. The “A” reg is lost.
[RST24 vectors to 4006H and then to 1C90H.
JREEE Rk
R8T24 JP ;RST 24 Vectors to 1C90H IN LII
JRERE R
3*QUTBYT: This routine is used to output a byte to a device specified by
3¥ the DCB pointed to by DE upon entry. DE is lost during
) execution.
PhRRERERkk R
QUTBYT PUSH ;0utput a byte to a device
LD ;LD B with DCB type (Output)
IR ;JP I/0 Driver
;‘k‘.‘:‘k**’k****
;* RST32: This RST is used to determine the data type of the current
3% value in FPAl {See Volume I}.
1% Flags set are as follows: M=Integer, Z=8tring,
] PO=Single~precision, NC=Double~precision.
jFREEE AT
JP ;R8T 32 Vectors to 25DSH
CILBYT PUSH ;0utput a comtrol byte to a device.
LD ; (Unused in LII)
JR ;3JP I/0 Driver

Rom Disassembly: 1/0

s Fkdekik iRk

;* RST40: This RST is used snder DOS to request processes and overlays to
3% be loaded. If not executing under DOS, this RST may be used by
3 ¥ the assembly language programmer by placing a JP at
3% location 4COCH.
JREFRRERRR

0028 JP RST40V sJump to DOS command processor
JFkdek iR
;*KBSCAN: Scan the keyboard using the routine specified by the keyboard
1% DCB at location 4015H. If a key is pressed, jts ASCII value 1is
3 returned in the “A” register. If no key, a binary zero 1is
3® returned. DE is lost whem calling this routine.
s dkcIk kR

0028 KBSCAN 1D ;1D DCB Location

Q02E JR ;JP to INBYT
JEERRTREEE
1% RST48: This RST is used under DOS as the DEBUG breakpoint. It may be
¥ re-defined by the assembly language programmer using level 11
3F only by placing a J? at location 400FH
s wkkkR Ak H

0030 JP ;RST 48 is used as DEBUG Breakpoint
jERETFREIEAE
:%CRTBYT: Displays the ASCII value in register “A” on the video display at
;¥ the current cursor position as stored im locations 402040218 in
¥ the Video DCB block. DE is lost during call.
B bt

0033 CRTBYT 1D ;LD DCB Location (401DH}

0036 JR ;JP to QUTIBYT
s EEREETIEE
s% RST56: This RST is used in interrupt mode 1 (IM 1) under D0S. It should
3¥ not be re-configured. After an interrupt, execution begins at
3% location 4012H (which is a jump to a handling routine.)
3 The user could place a clock interrupt handling routime at this
3* location or another routine which may run off an interrupt
¥ generated by a non-standard peripheral or the clock in the
3 Expansion Interface if one is present.
s wEERdkkkkk

0038 RSTS6 JP ;RST56 —— Interrupt handler
s EEE KRR
;%*LPTBYT: Print the byte in Register “A” on the line printer using the
3F driver routine specified in the line prinmter DCB at location
3¥ 4025H. DE is lost during execution.
s dedekdk R

0038 LPTBYT 1D ;LD DCB Location 4025H

003E JR ;JP to OUTBY?T

6—4

0040

0043
0044
0045

0046

0049
004C
004D
004E

0050
0052
0054
0456
0058
0054
005¢C
005E

0060
0061
0062
0063
0065

Rom Disassembly: I/0

s EEEERER R
;*BUFFNV: Entry at this location vectors to the buffer input routine at
3% 05D9H. See comments at that location for full details.
REE Rk Ekk
BUFFNV JP
RET ;Not used in Level II
NOP ;Not used in Level TI
NOP ;Not used in Level 1T
s Fdodk Rk
;*DRIVRV: To save space, all of the above I/0 operations jump to the
] driver address contained in the DCB by way of a JR to this JP
i Vector to the routine at 03C2H,
§FEEEARR R
DRIVRY JP
3wk
;*GETCHR: Scans the keyboaxrd using the KBSCAN routine and waits for a key
3% to be pressed. The character is returned in Reg “A”. DE lost
3 during call.
§FEE SR A A AAA
GETCHR CALL ;Call KBSCAN Routine
OR ;8et Zero flag if no char
RET ;sReturn if a key was pressed
JR sNothing hit. Try again.
JFEE T
;* KBIBL: Keyboard table for use with keyboard driver
¥ Special characters table
3 HRENRRARRRY
KBTBL DEFB 0DH,0DH ;CR, Shift CR
DEFB 1¥H,1FH ;CLEAR, Shift CLEAR
DEFB 01#,01H ;BREAK, Shift BREAK
DEF3B 5BH,1BH ;Up Arrow, Shift Up Arrow {(ESC)
DEFB QAN ,1AB ;Down Arrow (LF), Shift Down Arrow
DEF3B 08H,18H ;Backspace, CANCEL
DE¥B 09H,19H ;Tab, 32~Char mode
DEFB 20H, 204 ;S5pace, Shift Space

3
;% DELAY: Delay loop. Upon entry, BC loaded with delay count.
3% “A” and “BC” registers lost. 14.66 msec per loop.

JFFERR Rk
DELAY DEC
1D
OR
JR
RET

;DEC Delay counter

;P/U High order byte of count.
:Determine whether BC=zero
sLoop until counter=0

;Back to caller

6-5

Rom Disassembly: I/0

0066
0069
006C
006D
006F
0072

0075

0078
00738
007%

0080

0083
0085
0086
0087
0088
008A

0088

008E
0021
0093
0096
0098
0099
009A
0098
009C
069D

NMI: Non-maskable Interrupt Vector

Control passes to this point when the RESET button
is pressed on the back of the CPU.

JRERHF RS

%

3

k

3

¥

 F ik RR

RMI 1p

1D
INC
CP
JP
Jp

R

;*CSTLIT: Gold-start for Level II BASIC

.
1
.
¥
-
Ll

2

;Set dummy stack pointer

;Check if Exp. Interface present
:by getting status of floppy disk
;CP one more than 00+1

;Coldstart if Exp. Int. present
:Warm-start (Restart BASIC without
;destroying pointers.

Routine initializes locatioms, L3 error vectors,
puts returng in disk hook locations,

determines memory size, then jumps into BASIC.
cREEREAREwE

CSTLII LD

b
LD
LDIR

iD

1D
INC
D
INC
LD
INC

LD

LD

b
1p
IRC
LD
INC
LD
INC
DINZ

;Intialize 39 locations

; starting at 4080H

: from data starting at 18F7H
;39 locations loop

;MOVE!

;Place 34,00,2C in locations
; preceeding I/0 buffer
;Store 3A

iMove pointer

38tore 00H

;Move pointer

jStore 2CH

;Move pointer

;Place 41E8 in 40A7H

; which points to the

; beginning of the I/0 buffer.

;Set return vectors for L3 Error
:28 sets of “JP L3ERR®

: starting at 4152H

;LD “JP” imstruction

;Move pointer

:Store LSB of L3ERR entry point.
;Move pointer

;Store MSB of L3ERR entry point.
;jMove pointer

;Loop until 28 sets domne

009F
00Al
00A3

0044
00A5
0046

00A8
00AR

00AC
00AF

00B2
00B5
00B8
00BB
00BE
00¢co
00cC1
g0c2

00Ca
00c7
00C8
00cY
00ca
0oce
00cCD
00CE
00CF
00D0
00Dl
00D2
00D4

00D6

00D9
00bA

00DD

********&*

*MEMSIZ Checks each byte in memory for the ability
to hold all values. Any error causes termination

of the memory test.
s FEk IR EREY

Rom Disassembly: 1I/0

LB ;Puts 21 return statements
LD every third pesition

¥
INC ; (since JP’S would be placed
5 there if the calls
INC ; are used by DOS, for example)
INC ;Pointer to next entry
DJINZ ;Loop thru 21 sets
1p ;Put a zero at CONG
LD ; {According to Radio Shack, this
; address is always zero).
p ;LD 5P, Low memory stack location
CALL ;Set beginning of string area,
3 Stack save area.
; LD 8P with beginning of string
;3 area, devices Reset
CALL ;Clear screen
1D ;Point to "MEMORY SIZE" msg.
CALL ;Print "MEMORY SIZEY
CALL sPrint "7 ", Input up to 240 chars.
JR ;If return by <BREAK>, re—enter
RST ;Check buffer for input
OR ;Any non-zero character?
JR ;If a number was input, convert.

; else calculate MEMSIZ

MEMSIZ 1D ;START AT 434C+]1 for mem check
INC ;8kip to next address in RAM
LD ;Check for address 0000H
OR ; for over—run of counter
JR ;JP if cycle complete
1D ;I.D current value from memory
LD ;Save for restoration
CPL ;0ne”s comp. “A” to check all bits
Lb ;8tore this new value
CP ;CP stored value with correct value
LD ;Restore original value
JR ;1f good CP, test next addr.
JR ; Else it has found max. mem. size
CALL ;Convert value in buffer
;3 to 2-Byte DE value.
OR ;Test last byte read for 00H
JP ;If not zero, SYNTAX ERROR
EX ;Put value into HL

Rom Disassembly: I/0

00DE
00DF
Q0E1
00E2
00E3
00E4
00E5

00E7
00E8
00EB
00EC

COEF
QCF2
00F5
00F6

00F9

O00FC
0O0FF
0102

0105
0110

0111
0128
012¢

017D
012F

DMEMSZ

DRSLZB

s RERFEEERER

% L3ERR: Level 3 error {?L3) for Disk BASIC calls

during Level II BASIC
kERERARREE

M e

-

*

L3ERR

DEC
LD
LD
b
CP
1D
JR

DEC
1D
RST
JP

LD
1b

1D
CALL
D
CALL
JP

DEFM
NoP

DEFM
DEFB
NOP

LD
JP

"MEMORY SIZE”

“RADIO SHACK

6-8

:Back one location

;Check ability to hold value
;Load current value into B

;LD ADDR,8F(poor value choice)
;CP with correct value
:Restore old value

sJP if Check fails.

; Get another MEMBIZ

;sDEC to proper address

;LD Minimum mem required

;CP DE,BL

1IF HL < DE, Out of Memory Error

;LD DE,~50 to reserve strimg space
;LD Machine size

;Sub 50 from HL

;LD address of strimg area with

s MEMSIZ-50

sInitialize work ares

: (same as BCMD "NEW")

;Pt to "RADIO SHACK LEVEL IX BASICY
;Print out msg

;Goto BASIC

:Ending delimiter
LEVEL 1II BASIC”

;Ending delimiter

;LD L3 error number (2CH)
:Goto error print

0132
0133

0134

0135

0137

0138

0l3a

0138
013c
013D
013F
0140
0142
0145
0146

Rom Disassembly: I/0

M e L Rk L R L T s

% Graphics Routines *
B o Ty

("R I

s d AR ARk R
3% POINT: Entry for BASIC command POINT, represented
d in a BASIC program as a G6H.
s REERoR R ko
POINT RST ;Entry for BCMD POINT (C6)
X0R ;The operation to be performed
;3 depends on the contents of the
3 A" register. When A=zero, POINT
LD ;Dummy command. SET enters
5 at 0135H, in the middle of
; this instruction,
JREEIR R
3 SET: Entry point for BASIC command SET, represented
H in a BASIC program as 83H.
FEEAEERLAK
SET 1D ;Entry for BCMD SET {83).
; As above, the determination
; between cmds POINT, SET, and
; RESET is done thru the “A” reg.
;The SET flag is bit 7 (80H)
;NOTE: When entering from POINT,
; this command is invisible.
;5 The opcode is part of LD BC at
5 location 0134H
LD ;Hide entry point to RESET.
;**#******3‘:
;¥ RESET: Entry point for BASIC command RESET, represented
3% in a BASIC program as §2H.
s RFTE Rk
RESET LD ;Entry for BCMD RESET (82)
;Also NOTE that this instruction is
; invisible when entering
; from the above code.
PUSH ;8ave the A" reg. that denctes the
; operation to be performed.
RST ;Find X coord. and return in “A”.
28 DEFB “(” ; after a syntax check for “(°
CALL
BEC ;DEC parser pointer
cP ;% coord. must be less than 1281
Jp ;1f not <128, Illegal Funection Call
PUSE ;Save X coord.
RST ;Find Y coord. and ret in “A”

6-9

Rom Disassembly: I/0

0147 2¢ DEFB “, 3 Syntax check for comma.

0148 CALL

0148 CcP ;¥ Coord. must be < 48

(14D Jp ;If not <48, Illegal Function Call
Rk kR

.% The next section divides the Y coord. by three (3) to get

* the row number <stored in D>, and the remainder <in “C">

*. Remember, an integer division (with remainder) is really just
% a series of subtractions, until the value goes below zero and then
:% one more increment to bring it positive again.

L T AT)

4 In this case, the number to be divided is in the accumulator, and
;* and the quotient is being calculated in reg D.
s FEEEkR ARk
0150 LD ;Prepare D reg.
0152 INC ;Increment loop
0153 SUB ;Subtract 3 from the accum.
0155 JR ;Has it gone below zero?
0157 ADD ;:Restore to positive value
; (Get remainder)
0159 LD :Store remainder in “C”
015A POP ;Restore X coord. into “A7
0158 ADD ;Multiply by twe (2)
015¢C 1D ;Store in “E7
015D L ;This section determines the LSB
015F ip ; of the position on the screen,
0160 RRA ; the value of which is placed in
; Register "E".
0lel 1D
0162 1D
0163 RRA
0164 1D
0165 DINZ
0167 LD ;This section uses the remainder to
0168 ADC ; to determine the MS8B of the
0169 INC ; byte”s location on the screen.
016A 1D ;Value is then placed in “D°
016B X0R ; The location is now in DE.
016C SCF
016D ADC
Q16E DINZ
0170 1D
0171 1D
0172 OR
0174 LD
0175 D ;LD A, character to be manipulated
0176 OR
0177 JP :JP if bit 7 set
; <A graphics character>
0174 Lb ;Was not graphic.

; Set b7. Reset other bits

6-10

017¢
017p

017E
017¥
0180
0182
0183
0186
0187
0188
0189
0184
0188
018C
018D
Gl8E

018F
0190
0192
0193

0195
01%6
0197
01%A
0198

019D
019E
019F
01A2
C1A3
01A5
0148
01AS

01AB
0I1AC
01AD

0180
01B1
01B4
0185
018

29

FRERRRREAY

we

FERRRXRINE

Wy ow

LD
POP

OR
LD
JR
LD
JP
LD
CPL
LD
1D
AND
LD
RST
DEFB
RET

OR
JR
AND
ADD

SBC
PUSH
CALL
POP
JR

INKEY RST
PUSH
LD
OR
JR
CALL
OR
JR

PUSH
XOR
LD

INC
CALL
POP
LD
ip

611

Rom Disassembly: I/0

;POP type of operation
; from PUSH at 013AH

;Restore byte

;JP if BCMD “POINT”

;8tore byte on screen

;JP if BCMD “SET

;Load bit to reset

3A1]l bits = 1 except bit to reset

;Get character again

;Reset bit

;Store new value

;Clean-up

; Syntax chk: closing parenthesis

;SET bit
;Finish up.

;Check bit for ON/OFF
;If bit ON, RET = -1 (80H).

; Else RET=(

;Save HL from destruction
;Routine determines sign of value

;Restore HL

;¥ INKEY: Entry point for BASIC command INKEY$, represented
H in the BASIC program as CY9H

;Entry for BCMD INKEYS (C9)
;Save parser pointer

;LD last key hit

;8kip scan if already have key
;5can keyboard for depressed key

;Nothing depressed.
; Skip next section.
;Save char. in “A”

;Zero A7

;Place in last key hit location
; 5o that this key is not re-read

;40D3=01: 40D4~5 = Dest. for string
;Restore character
;Load string destination

;Put character

Rom Disassembly: I/0

01B9

01BC
(Q1BF
0lc2
01ch
01¢7
01c8

01¢so
01CB
01CE
01p0

01D3

01D5
01D8

01D9
01pC

01DF
01ElL
01E3
01E6
01E9
O1EB
01ED
01F9Q
01F3
01F5
01¥7

JP :Back to caller after character
; placed in FPAl (Vol I)
LD ;1D pointer to "READY" message
b ;Place address in FPAl
D ;Define as a string
1D ;LD TYPFLG for "STRING"
POP
RET
; Fekiiniiek
3% CLS: Entry point used to clear the screen.
3% “A” is lost during execution.
s FEE AR
CLS 1D ;Entry BCMD CLS (84)
CALL sWrite Home-cursor to screen
1D ;1D Clear=~to—end char.
Je ;Write to screen and REL,
s Fedd R ddRdk
;* RANDOM: Entry point for BASIC command RANDOM, represented
e in a BASIC program as 86H.
s FkkEIEFFH
RANDOM 1D ;Entry for BCMD RANDOM (86)
;LD A,Memory Refresh Register "R’
s to get a truly "random" number.
LD ;Store in RNDBYT as part of seed
RET 3;Back to caller

;*****#**************************#**#***

¥ Cassette I/0 Routines

T
w

;k****************###k***ﬁ********W*****

;**#***#**ﬁ

;% CWBIT: Write bit to cassette

;**********

CWBIT LD
CALL

LD
DJINZ
1D
CALL
LD
DJINZ
Lb
CALL
Lb
DJNZ
RET

;Write bit to cassette

;8et bit 0 of the

: cassette flip flop (CFF)
; Reset bit 1

;Timing delay

1Set bit 1 of CFF : Reset bit O
;Timing delay

;Reset bits 0 & 1 of CFF
;Timing delay

6-12

Rom Disassembly: I/0

ek
;% CTOFF: Turn cassette motor off
s iy ek
0IF8 CTOFF PUSH ;Cassette off
01F9 LD ;Clear bit 2 of CFF
01FC JR
;*-}.“k‘kﬁ**'z‘:k*
3% CTON: Turn cassette motor on
;:—‘c‘i.‘**k-k****‘a’r
01FE CTON LD ;LD next char {in program usually)
01FF SUB ;Test for "#'" as in "PRINT #-X"
0201 1P ;Default to drive 00
0203 JR ;JP if next char is not "#"
0205 CALL ;Determine the drive number
0208 RST ; from the PRINT # or INPUT #
; statements
0209 2C DEFM 7 ;8yntax check: comma required
0204 LD
0208 AND ;Check to see Cassette drive number
020C ADD ; Is 1t over 2 7
020E JP ;Yes, Illegal Function Call
: (No such drive).
0211 DEC
JFddk R
;*DEFDRV: Define cassette drive from Register “A7.
s wdRR ek
0212 DEFDRV LD ;Define drive by outputting
; to cassette select latch.
0215 PUSH ;8ave HL Pointer.
0216 1D
0219 CALL :Set bit 2 of CFF
021C POP ;Restore HL
021ip RET ;Drive Selected
s Ak
3*CLECFF: Clear Cassette Flip—flop
s FEERRR g
021E CLRCFF 1D ;Clear CFF
FEFFEREE T
;*STATEF: Change status of cassette flip—-flop from BHL
;'k‘:““k*k‘,’.“:."****
0221 STATFF 1D ;Change status of CFF
0224 AND ;Manipulate old value in CFF
0225 OR
0226 ouT ;Output to port to change status
0228 1D ;Store new value
022B RET ;Back to caller

6-13

Rom Disassembly: I/0

$HdedRR K
3* CSTAR: Change star in corner of screen during casselte 1/0
; dkdink
0z2¢ CSTAR LD ;Change star in corner
; at address 3C3FH
022F XOR ;From <SPACE> to "*" or...
0231 LD i from "*" to <SPACE>
0234 RET ;Completed. Return
; KEEETRTRdR
;*CRBYTE: Read single byte from cassette
EEEEREEARE
0235 CRBYTE PUSH ;Read byte from cassette
0236 PUSH
0237 1b ;Read 8 bits
0239 CALL sRead bit from cassette
023C DINZ ;If not 8 bits, read another
(023E POP
023F POP
0240 RET ;Byte read into “A”, RET
s kK
;% CRBIT: Read a single bit from the cassette
drircikbkdkk
0241 CRBIT PUSH ;Read bit from cassette
0242 PUSH
0243 IN ;Search for timing bit
0245 RLA
0246 JR ;Not found. Try again
0248 1b ;Timing delay
0244 DJRZ
024¢C CALL ;:Clear CFF
(024F ip ;Timing delay
0251 DJINZ
0253 IN ;Input data bit from cassette port
; into high order bit
0255 1D
0256 POP ;Restore “A”
0257 RL ;Rotate high order bit into carry
0259 RLA ;Rotate bit into “A” in low order
025A PUSH ;8ave new value
025B CALL 1Clear CFF
025E POP ;Restore value
0260 RET
s Tk ERR RN
;*CW2BYT: Write byte to cassette twice
e
0261 CHW2BYT CALL iWrite byte to cassette TWICE!

6~14

0264
0265
0266
0267
0268
0264
0268
026E
026F
0270

0271
0273
0276
0277
0279
0274
0278
027¢
027D

027E
0280
0282

0284
0287
0289
028A
028D
028F
0291

0293
0296
0297

;*******k*ﬂ

3¥ CWBYT: Write byte to cassette

;**********

CWBYT PUSH
PUSH
PUSH
PUSH
LD
LD
CALL
1D
RiLC
ip

JR
CALL
DEC
JR
FOP
POP
POP
POP
RET

Lp
DINZ
JR

;******ﬁ***

;FCTONWL: Cassette ON, Write leader

;*%********

CTONWIL. CALL

CWLDR LD
XOR
CALL
DINZ
LD
JR

s FEF Ik
;*CTONRL: Cassette on, read
s FEFdRiok
CTONRL CALL
PUSH
X0R

Rom Disassembly: I/0

;Write byte to cassette
;First save registers used

3Eight bits per byte

;8ave “A” contents

;Write timing bit

sRestore character to write
;Rotate high order bit into CARRY
;Keep this rotated value

; for next loop

;If no bit, then delay
;Write data bit

;DEC bit counter

1Go again if not domne
;Restore registers

;Bit=0. Do NOT write data bit
;Delay
;Get another bit

;Cassette on, write leader

:Write leader of 255 bytes of Q0H
;Clear “A” to 00

;Hrite byte to cassette

;Loop through Z55 bytes

;LD A, sync. byte (ASH)

;Hrite sync. byte after leader

leader routine

6-15

;Cassette on
;5ave HL pointer
;Drive 0

Rom Disassembly: 1/0

0297

02a1
0254
0247
0248

02A9

02AC
02AF

0282
02B5
0288
(288
028D
62c0

02c3
02¢C6
92C7
02CA
02¢¢C
(02CE

EEEARA S
:%* CRLDR: Read leader searching for sync. byte
EREERERRE
CRLDR CALL iRead leader searching
; for sync. byte
cp : (A5 is sync byte), by reading
; a byte and comparing
JR ; it to ASH
s Fdekk Rk
1% CSTARS: Cassette stars placement in corner of screen
s kR kd
CSTARS 1D ;LD A, T%7
;Put two stars in cormer of screen
LD ;Put first star at 3C3EH
LD sPut secomnd star at 3C3FH
POP ;Restore HL
RET
JEERikdckik
;*SYSTEM: TR$-B0 System Tape Utility
¥ Reads "SYSTEM" format tapes, and allows
3x transfer to a RAM address either specified by the
3 ¥ program tape or by a decimal number entered by the
¥ user after a slash [/]
s kR R
CALL :Get transfer address for SYSTEM
;3 from tape.
1D ;Load into transfer addr. location
CALL ;Cassette off
SYSTEM CALL ;System entry point (BCMD AE)
LD
CALL :0utput CR to current device
D ;LD A,7®7
CALL ;0utput "% (Display user prompt)
CALIL ;Input buffer of 240 characters
; after "? " prompt
JP ;If ended on <BREAK> GOTO BASIC
R8T ;Test buffer
JP ;If nothing there, SYNTAX ERROR
cP ;CP 7/
JR ;JP if match to "SYSGO"
CALL ;Cassette on, find sync byte,

6-16

; put stars in corner

02p1
02b4
(2D6
02D8
02DA
0208
02DC
02DE
02El

02E2
024

02E5
0287
02EA
02ED

02EF
02F1

02F3

02F5
02F8
02F9
02rC
02FD
02FE
0301
0302
0303
0304
0365

jNote:

W ke e

Rom Disassembly: I/0

CALL ;Read byte from cassette
cr ;8earch for byte preceding title
JR
LD ;Load max number of Chars. in title
LD ;LD first char. in title into “A”
OR ;Check for end-of-buffer
JR ;JP if End-of~Title found
CALL ;Read byte from cassette
cP ;CP byte from cassette
; with next byte in title
JR ;Get another byte if no match
INC ;INC buffer pointer

In some machines, the INC HL comes before

the JP NZ. If this is the case in a machine,
whenever the bytes do not match, SYSTEM will never
find the correct title, since the buffer pointer
is never resetl

DJNZ ;Go back and get another char.
CALL ;Change star

CALL ;Read byte from cassette

cP ;CP BYTE,78H which is the byte

3 preceeding the transfer addr.
; at the end of the tape.

JR ;JP if match to READ ADDR, CTOFF
CP ;CP BYTE,3CH which is the byte

; preceeding the load address
JR ;JP If no match.

Each separate record on a system tape must have

a load address preceeding 1it.

At this point, the record separator has been located.
The number of bytes in the record, the load address,
the data record, and the checksum (at the end) will be
Tead.

The load address is INCLUDED in the checksum!

CALL ;Read number of bytes in record
LD ;8tore in B

CALL ;Get load address

ADD ;Add load address to checksum, too.
1p ;Save checksum in “C7,

CALL ;Read data byte

LD ;8ave at proper address

INC ;INC load address

ADD ;Add previous checksum

1D ;8ave new checksum

DJINZ ;Get another byte in record

6-17

Rom Disassembly: 1I/0

0307

0304
030B
030D
030F
0312
0314
0317
0318
0318
031c¢
031D

031E
0321
0322
0323

0326
0328
0329

0324
0328
032¢
032r
0332
0333
0334
0335
0338
033A
033B
033E
033F

0342
0345
0346
0347

CALL ;Get the recorded checksum
; at the end—of-rec on tape
c ;CP with computed checksum
JR ;If OK, get another record
LD ;Checksum error
LD ;Put “C” in corner replacing “#¥7
JR ;6et another record
GETADR CALL ;Get an address from tape
LD ;LD L, LSB
CALL ;Get next byte
LD ;LD H, MSB
RET ;Done
EX 1Goto address, either from
; [<Decimal #>
; or from address from tape
D ;LD system transfer address
EX sPut in DE
RST ;Check input buffer
CALL ;If a number presemt, convert to
3 a two-byte DE value
JR ;Back to system if mo convert
EX ;Switch address to HL for JP
JB ;GO
shkRdkRk ok
s*DSPCHR: Display the byte in “A” on the current device.
¥ The current device is determined by the flag at 409CH.
3% If the flag has bit 7 set, output to the cassette.
¥ If other than zero (00H), send to line printer.
o If zero, send to the video monitor.
e DE not destroyed.
kI RAREE
DSPCHER PUSH
LD :8ave byte to output in “C”
CALL ;Disk hook to 41CI1H
LD ;LD I/0 flag
OR ;Set flags depending on value
LD ;Restore output character
FOP ;Restore BC
JP ;If bit 7 set, output to cassette
JR ;0utput to printer if non-zero
PUSHE
CALL ;0utput character to monitor
PUSH
CALL 3Call POSIND
; (line position indicator)
1D iSave position in CRTPOS
POP ;jRestore output byte
POP
RET

6~-18

0348

0348
034D
03590
0352
0353
0355
0357

0358
035B
035C

035F
0360

6361
0362
0365

0368
0368
036C
036F
0371
0374
0375

0376
0378
0379
0378

.
b

2

¥

Rom Disassembly: I/0

B ST
;*POSIND: Determines the cursor position on the screen
3% taking into consideration 32-char mode.
R
LD ;Check bit 3 of cassette status
; byte for 32-char mode
AND
LD ;LD A,Cursor position (OLD)
JR ;JP if double width
RRCA ;Divide by two
AND :Make sure value < 32
AND ;Make sure value < 64
RET ;Completed

.
3

FRdkhRwiEeR

;*KBDSCN: Keyboard scan, saving DE register pair.

3

3

ke

sRRRARIERR

2

KBDSCN CALL

;¥ Scans the keyboard for imput using the
3¥ routine starting at 2BH, but does not destroy DE.

sDisk hook to 41C4E

PUSH ;Save DE
CALL ;Scan keyboard.
3 Return char. in A7
PO? ;Restore DE
RET
3 FEdR AR
5*INCHRS: Inputs up to 240 characters using the BUFFIN
3 ¥ Routine at 05D9H.
3% Exit: HL points to beginning of buffer-1
3F BC Saved, “A” zero if no <BREAK>
3® Carry if <BREAK>, end of buffer has 00H instead of ODH
JFE ISk A
INCHRS XOR ;Clear “A” for next two steps
LD ;Zero IKKEYS byte
1D ;1D current line position on video
i with zero (00H), even though it
; might be in another position.
CALL ;Disk hook to 41AFH
PUSH ;Save BC
D ;1D BL, Beginning of input buffer
D ;Set up for input of 240 chars.
CALL ;Call buffer-input routine
PUSH ;Save flags
LD ;Add number of chars. to beginning
; of buffer
LD ;Zero MSB for ADD
ADD ;Point HL to end of buffer
LD ;Put a zero, replacing CR
D ;Point HL to beginmning of buffer

6-19

Rom Disassembly: I/0

037E
0377
0380
0381
0382
0383

0384
0387
(388
0389

0388
038¢

038r

0392
0393
0394
0396
0397

039a
0398

039C
039D
03%E
039F
03A0

03a2
0344
0346
0348
0344
03ac
03AD
03AF
03B1
G3B4

POP ;Restore flags to check for <BREAK>
POP
DEC ;Point HL to beginning of buffer~1
RET ;Return if BUFFIN ended on <BREAK>
XO0R ;Clear “A7
RET
'#'k**‘k‘k****
*GTDCHR Scan kevboard using KBDSCN at 0358H
,* and wait for imput. DE not destroyed
s EFRRER R AL
GIDCHR CALL ;Scan keyboard, saving DE
OR ;Check for input (NZ)
RET ;Return if character present
JR ;8can again
; FkER Rk
;*RSTDEV: Resets current device to video monitor.
3® Checks line printer and forces CR if in middle of line.
; dedededddediokd
RSTBEY ZX0R ;Clear “A7
LD ;5et current device
; to video display
LD ;Check for characters in
; line printer buffer
OR
RET ;Nothing there. No need to fimish
iR H ;Force a CR
PysH ;5ave DE
CALL ;0utput CR to prinmter
;3 (eclears printer buffer)
POoP ;Restore DE
RET
s ki Rk
;¥*LPDCHR: Output byte im A7 to line printer
3 ¥ Registers saved
ek
LPDCHR PUSHE ;Save character to print
PUSH ;Save registers
PUSH
1D ;5ave byte to print
1D ;Initialize line position
; at zero (00H)
H ;CP char.,, form feed
JR 5JP if form feed
CP ;CP char., linefeed
JR 3JP if not linefeed
b ;Change LF to CR
1D ;Store in 7C7
cy 3CP char., CR
JR ;JP if CR
1D sLD A, Current line Position
INC 3INC line position

6-20

Rom Disassembly: I/0

03B5 LD ;Store in “E”
03E6 LD :Store current line position im “A”
0387 LD ; then store it in LPTPOS
03BA 1D ;Restore char. to print from “C”
03BB CALL ;0utput character to printer
03BE POP ;Restore registers
03BF POP
03C0 POP
03¢l RET
;****1‘:*****

;*DRIVER: 1/0 Driver, using the Device Comntrol Block {DCB)

H Entry:; LD DE, DCE location
¥ LD A, Character
3% LD B, type of operation
3% BC pushed
3F Exit: Branch to driver address at DCB+1,DCB+2
e Returns to driver to restore registfers
;*:‘:'«"-‘?‘:‘:‘-“-‘-‘1‘.‘1‘:3":*
03C2 DRIVER PUSH ;Save registers
03C3 PUSH
03¢5 PUSH :1D IX,DE
03C6 POP
03C8 PUSH
03¢9 LD ;5et up return address
03CC PUSH ;Push address
03CDh LD ;Save character to print
03CE LD ;1D DCB type
03CF AND ;AND with type of operation
03D0 cp ;CP with type of operation
0301 Jp ;JP to "Driver Call Illogical"”
; if not the same.
; (EX: Input from a CRT invalid)
03D4 CP ;CP with type of operation
; denoting output
(03D6 1D ;LD LSB of driver address
03b9 Lb ;LD MSB of driver address
03DC JP ;GOTO driver for device
03ep DRVRET POP ;After return from driver,
; rTestore registers
03DE POP
03E0 POP
03El POP
03E2 RET
;*******‘k‘k‘k
3% KEYIN: Scans the keyboard, searching for a newly
3% depressed key. The result of the scan
] is returned in resister “A”. This is the
e routine called by the DRIVER, as specified
3% the DCB.
« dedd ek kN

>

6-21

Rom Disassembly: I/0

03E3

03E6

03E9
03EB
03EC
03ED
03EE

03EF

03F0
03F2
03F3
03F4
03F6

03F9
03FA
(03FB
03FC
03FD
03FE
03FF
0400

0402

0403
0404
0406
0407
0409
04038
040E
040F
0410

KEYIN LD

LD

LD
LD
1D
X0R
LD

JR
IKC
INC
RLG
Jp

RET
b
LD
RLC
RLC
RLC
D
1b

;**********
]

;LD Keyboard image start.

The keyboard image table
contains the value of the last
scan of the keyboard for each of
the seven locatioms

:1D the start of the keyboard

: BC now contains the first

; address of the lccations

31 to be scanned

;Zero key counter

;Load first character from keyboard
;S5ave result

;X0R with old value

;S5tore this new value in

; keyboard image

;Check to see if the key

: was pressed before

;JP if new key depressed

3INC key counter

;INC keyboard image location.
;G0T0 next keyboard positiom

+IF not 7 locations scanned,

3 go again

;No key was found

;8ave the "LIT" bit

;Determine 8 * ROU#

;%2

R

;%8

;Save 8 * ROWH

we e WY W

:* The next section adds to 8 ¥ ROW# the column number

;¥ (i.e., if bit 3 is on, then the key pressed was in the
;% 3rd column, so three (3) is added to register “D7.

:% Remember, bit 0 denotes column 0.)

;*****ﬁ****

1p

AND
JR
INC
RLC
JR
LD
1D
LD
ADD

6-22

3ILD € (This value will have only
; ome bit on.)

;Check if the bits match up

+JP if bits match

;INC value

;Shift comparison bit

;Test next bit

3;Test for <SHIFT>

;Put value of <SHIFT> in “B”
3Load the semi-converted character
;If alphabetic, convert to

; correct value

0412
0414
0416
0418
0414
041C
041D
0420
0422
0424
0425
0427
0429
0428
042b
042F

0431
0433
0435
0437
0439
043B
043D
043E
0440
0442

0443

0446
0447
0449
0444
0448

044C
044y
0452
0453
0455
0456
0457

cp
JR

JR
ADD
LD
b

JR
1D
SUB
JR
SUB
JR
ADD
143

JR
XC0R
RRC
JR
X0R
JR
RLC
RRC
JR
INC

1D
LD
ADD
ip
ip

LD
CALL
LD
CP
RET
R8T
RET

6-23

Rom Disassembly: I/0

;JP if nom—alphabetic

;Test for <SHIFT>

;3 JP if no <SHIFT>

;Convert to lowercase

;8ave value

;Check for down arrow depressed
: (Shift-downarrow = Control)
;Jump if neot a control character
;Restore char.

;Convert to control code

;8kip next section

1SUB 708 for non—alphabetic

3+JP if a special character
;Convert to Numeric/Symbol
;Manipulate value to get

; proper code

;Check for <SHIFI>

;JP if WO <SHIFT>

sAdjust for <SHIFI>

sDONE

;Table look—up of special chars.
;Check <SHIFT>

;JP if no <SHIFT>

;Shist chars. in table are located
; one location after un-shifted
;LD HL, Beginning

; of special char. Table

;Find location of char. in table

;LD char, from table
;8can complete.

; Save char. for delay
;Delay loop

;Delay

;Restore character
;Check for <BREAK>

;NO <BREAK>

sBREAK! RST 40 (Debug)
;Back to caller

Rom Disassembly: I/0

0458
0458
0458
0460
0463
0464
0466

0467
0468
0464

046D
046F

0471
0473
0475
0477
0479
0478
047D
0480
0481
0483
0485
0486
0487
0484
048B
048D
0490
0492
0495
0498
0499

0494
049D
049K
049F

0440

Lttt e e T et e e e e

e ae W wa W

-

*
*

L

Video Display Driver *
Entry: IX = DCB location %
“C” = Character *
to display b
 AEREFER R R R RS kR R Rk R ke ek bk ke dek kR ok
VIDEQ LD ;LD HL, Curser position
1D
JR ;Jump if this is input request
ip ;ED A, character at cursor
OR ;Anything there?
JR ;JP if nothing at cursor
LD ;Restore character at cursor
; on display
LD ;Restore character to print
cp ;CP <SPACE>
JP ;JP if a control code
s {Special Character Routines)
CP
JR ;JP if a graphic
; or space compression code
CP
JR ;JP if not alphabetic
SUB
CP
JR ;JP if uppercase
SUB ;Convert to uppercase
CALL ;Write character
D ;Determine MSB of cursor location
AND
OR
LD
LD ;Save character at cursor position
LD ;LD A, character at cursor
OR ;Anything there?
JR 3JP if nothing there
LD ySave character at cursor
LD sWrite cursor
1D ;8ave new cursor position
1p
Lb ;Restore character to print
RET sBack to caller
; (Usually the DRIVER)
n ;LD A, Character at cursor
CR
RET ;Return if something there
)] ;LD A, Character on screen
3y at cursor position
RET

6-24

04A1

04A2
04 AL
0445

0446
04A8
04AA
04AC
04AE
04AF
0481
04B4
0486

04388
04B9
04BC

04ED
04BE
04C0

04C3

04C6
04C8
04CE

04CDh

04CE
04CF
04D2
04D4
04106
04D7
04D9
04DA
04DD
04DF
04E2
04E3
04E5
04E6

04E7
04EA
04EB

Rom Disassembly: I/0

LD ;Return cursor position
; to beginning of line
AND
LD
RET
CP
JR ;3JP if a graphic character
SUB ;Convert to 00-63 spaces
JR ;IF 00, already finished
1D ;Set up loop count
D ;Will be sending <SPACE>"s
CALL ;0utput <SPACE>
DINZ ;Loop if not finished
JR ;Done sending <SPACE>"s
LD ;Turn cursor on
LD
RET
X0R ;Turn cursor off
JR
LD ;Home cursor to first position
3 On sCcTeen
LD ;Load cassette status byte
; for 32-char. mode
AND ;32-Char off!
LD ;Restore cassette status byte
OuT ;Output lower 4-~bits
;: {turn off 32-char.)
RET
DEC ;Backspace and erase previous char.
D ;Check for 32-char mode
AND
JR 3JP if 64~char mode
DEC ;Backspace twice for 32-char
LD ;Put a <SPACE>
RET
b s;Backspace cursor
AND ;Check for 32~char mode
CALL ;Backspace twice when in 32-char
1D
AND ;Set flags for begimning of line
DEC ;Backspace cursor
RET ;Return if not at beginning of line
1p ;Downward linefeed
ADD ;Move cursor to next line
RET

6-25

Rom Disassembly: I/0

04EC ING ;Advance cursor
04ED b
04EE AND :Check for beginning of line
04F0 RET ;Return if not
04F1 LD ;Upward linefeed (LD ~40H)
04F4 ADD ;Subtract ome line from current pos
04F5 RET
04TF6 D ;8et 32-char. mode
04F9 OR ;Set 32-char bit
04FB D ;8tore in cassette status byte
04FE 0UT 3Turn on 32-char. mdoe
0500 INC ;Correct cursor position
3 for 32-char. mode.
0501 D
0502 AND
0504 iD
0505 RET
0506 1D ;JP from above for control chars.
0509 PUSH ;8et up return address (0480H)
0504 cP ; <BACKSPACE>?
050G JR ; <BACKSPACE>1
050E CP s <LINEFEED>?
0510 RET ;Ret if value < QAH
0511 cp ;Check for linefeed.
0513 JR ;JP <LINEFEED CHARACTER>
0515 JR ;JP if <CURSCR ON>
0517 cP
0519 JR ;JP if <CURSOR OFF>
051R CP
051D JR ;JP if <32-CHAR MODE>
051F cP
0521 JR ;3JP if <BACKSPACE>
0523 CP
0525 JR 3JP if <ADVANCE CURSOR>
0527 cP
0529 JR ;JP if <DOWN LINEFEED>
0528 cp
052D JR ;JP if <UP LINEFEED>
052F CP :
0531 JR ;JP if <HOME CURSOR>
0533 cP
0535 JP ;JP if <CURSOR -~ BEGINNING OF LINE>
0538 CP
0534 JR ;JP if <ERASE TO END~OF-LINE>
053¢ cP
053E JR 3JP if <CLEAR END-QF-SCREEN>
0540 RET

626

0541
0542
0543
0546
0548
0544
0548
054¢C
054E
054F
0552
0553
0554

0557

0554
0558
055E
0560
0561
0562
0564
0565
0567
0568
0569

056¢
056D
056E
0570
0572
0573
0574
0575
0576
0578
0579
0574

057¢C
037D
0580
0582
0583
(584
0585
0587
0588
0589

1D
INC
LD

JR
IRC
LD
cr
RET
LD
ADD
PUSH
D

LD

PUSH
iD
LDIR
POP

JR
LD
AND
1D
PUSH
LD

ADD
LD
P
JR
POP
PUSH
LD
LD
OR
LD
IRC
JR

PUSH
LD
LD
IRC
B
cP
JR
1b
cr
JR

Rom Disassembly: 1/0

sWrite character onto screen
;INC pointer
;Check for 32-~char mode

+JP if 64-CHAR

;INC again for double width

;LD MSB of cursor position

;CP with highest allowable+l
;Return if not off screen

;DEC cursor position one line

; By adding -64 to cursor positiom
3;SAVE cursor position

;5croll screen

; (LD DE, First char. loc.)

;LD HL, First character location
;7 in second line

;SAVE BC

;Scroll full page

;Move characters!

;LD BL, Beginning of last line
;G0T0 CLEAR-TO-END-OF-~LINE
;Entry for <CR>"S

;GOTO Beginning—of-line

;Save pointer

;LD DE, 64

; to get pointer to next line
;Add one line to cursor position

;Over end?

;JP if over end-of-screen
;POP Position
;:Erase~to~end-of-line
;Set pointers

;Clear to end of line
:Clear to end-of-screen
;Clear line to blanks

;LD Cursor positonW, <SPACE>
;INC pointer

3B 1if not done

;JP if not done

Rom Disassembly: 1/0

0588
058¢C

058D
058E
0587
0591
0593
0595
0597
0599
0594
059D
059F
0542
(545
0546
G549
05AB
05AD
0580
0582
0584
0585
05B8
0584
05BB
O05BE
05C0
05¢C1
05C4
85C7
05CA
05CB
05¢CC
0500

05D1
05D4
05p6
05p8

POP
RET

;Pop pointer

R Tt T T T T Y S e e e e e e

Line Printer Driver
Entry: IX = DCB Locati
“C” = {haracter

H]

E O -

on

to be printed

L

S AREREEAEELRE AR RERERERRARR RN LA TR LA R T iR

(™

LPTDRV 1D
OR
JR
crP
JR
cy
JR
X0R
OR
JR
LD
5UB
LD
CALL
JR
LD
LD
DINZ
JR
PUSH
CALL
JR
POP
Lb
CcP
RET
ING
LD
cp
LD
RET
LD
RET

3 RkdRRdkikw

;*PSTATU: Check status of printer
skEkFkkkhik
PSTATU LD
AND
CPp
RET

6-28

;Restore char. to be printed from
;Skip nulls. Returns status
;Return status if NULL

;CP VT (Type of linefeed)

1JP if match

;CP Formfeed

:JP i1f no match

;Clear A7

:5ee if lines/page is set

;JP if not set

;1D number of lines/page
;Subtract value in page counter
;Store in “B” (count)

;Check if printer is ready
;Loop if not

;LD A, linefeed

;0utput linefeed to primter
;0utput "B" linefeeds to printer
;Set line counter to zero, RET
;0utput character to printer
;Printer ready?

;JP if busy.

sRestore character to print
;Output character to printer
;Is it a <CR>?

sReturn if not a <CB>

;INC line counter

;Load line counter

;Beyond end of paper?

;Restore printed character
;Return if not to end

;Zero line counter

;Check status of printer

;1f ready, Z Flag set

05n9
05DAa
G5DC
05DF

05E0
{15E3
05E5
Q05E7
05E9
05EC
05EE
05F0
G5F2
G5F4
G3F7
Q5F8
O5FA
05FC
O5FE
0600
0602
0604
0606
06038
0604

C60B
060C
060D

060CE

; whRRNhdead

*k

%

W o v wa M e W M

wa M e we W e
33k o ok ok 3b M a3 N % %

dedeveR R

BUFFIN

"N

Rom Disassembly:

*BUFFIN: Buffer input routine

Inputs a maximum of "B" characters into a buffer
pointed to by HL omn entry.

A RETURN is executed erther after an <ENTER>

or after <BREAK>. If by a <BREAK>, the carry is set.

During execution:
DE lost. HL points to buffer. BC used for number of chars.
‘A" stores chars.

Upon completion:

HL points to the beginning of buffer,

Carry flag set if ended with <BREAK>,

“B” holds the number of characters in buffer

1/0

PUSH ;8ave buffer pointer for return
LD ;Cursor on for imput
CALL 10utput cursor om character
LD ;LD “C” with number of chars.
; allowed. “B” will be decremented
CALL ;Scan keyboard and wait for KEY
cp ;Check for coantrol code
JR ;:JP if not control
CP ;Check for <ENTER>
JP ;JP 1f <ENTER>
CP ;Checlk for <CLEAR>
JR :J? if <CLEAR>
Ccp ;Check for <BREAK>
JR 3JP 1f <BREAK>
LD sLoad return address
PUSH ;Push return address onto stack
c ;Check for <BACKSPACE>
JR ;JP 1f <BACKSPACE> -
Ccp ;Check for <CANCEL>
JR ;JP 1f <CANCEL> (Shift BACKSPACE)
cp ;Check for <TAR>
JR ;JP if <TAB>
cy ;Check for <3Z2-Char. Mode>
JR ;JP 1f <32-char, mode> (Shift TAB)
CP 1Check for <LINEFEED>
RET ;Return to 05EQ
; 1t illegal control code
POP ;Take 05EQ address off stack
1D ;Put character in buffer
Lb ;1D A, number of characters
; left in buffer
OR ;Compare against itself

; f{only time zero flag set,

6-29

Rom Disassembly: I/0

060F

D611
0613
0616
0617

0619
061C

061D
061E

061F

0622
0625
0626
0627
0628
0624

0628

062C
062D
062F

0630
0631
0632
0633
0634
0635
0637
0638
0639

;*****#ﬁ***

; is when accumuator = zero)

JR ;No more room left.
; Wait for either <ENTER> or <BRK>
;3 before returning.

1D ;Restore character for output
CALL ;O0utput character

DEC ;DEC # of chars. left inm buffer.
JR ;Get another character

3% Hitting the <CLEAR> key clears screen and
;% resets pointers to orginal state

;**********

;#*********

CALIL ;Clear screen

i) ;Restore # chars. left in buffer
;3 to original value

POP ;Restore buffer pointer

PUSH 1PUSH back on stack buffer pointer
; for possible re-use

JP ;Back to the beginning!

;* Shift backspace clears one character at a time until the
;* beginning of the lime, or until a LF is reached in the buffer.

;**ﬁ**&**ﬁ%

;**#******#

;¥ BACKSPACE goes

3% or at a LF,
; FEE R F AR

CALL ;:Clear one character at a time
DEC ;DEC buffer pointer after BKSP
i3] ;Check char. at pointer
INC ;INC pointer before compare
CP ;CP with LF
RET ;RET, if LF since

; can’t BKSP over LF
1D ;Entry from shift BKSP.

; Checks for beginning of buffer.
GCP ;Is B=number chars. allowed?
JR ;JP if still have to backspace
RET ;8hift BKSP complete

back one char, unless already at beginning of buffer

ip ;Check for beginning of buffer
cp :Is B=number chars. allowed?
RET ;Already at beginning of buffer
DEC sDEC pointer in buffer

LD ;Check character for LF

cP ;CP with Linefeed character

ING ;INC Pointer

RET sChar. a LF, so RETURN.

DEC ;DEC pointer after INC at 0637H.

6~30

Rom Disassembly: 1/0

0634 LD ;Load backspace char., for output
063cC CALL ;0utput backspace
; and erase previous character
063F INC ;0ne more character allowed
; in buffer after BACKSPACE
0640 RET ;BACKSPACE completed
s R R RR R
;¥ 32-character mode turns display to 32Z-char. mode
;% but does not store the character (17H) in buffer.
3 dlek R Rk
0641 LD 3LD character for
; double width chars.
0643 JP ;0utput this char.

: Return to 05EQ (From PUSH)

;% TAB a
; ok
0646 CALL ;Determine position on screen
; (Returms in “A7)
0649 AND ;Determine # of chars.
; until next stop
0648 CPL
064C INC
064D ADD
064F LD 15ave # chars. in “E7
0650 LD ;Check 1f space in buff.
0651 OR
0652 RET ;RET. if no space left
0653 LD LD A,<SPACE>
0655 LD ;Put <SPACE> in buffer
0656 ING ;INC buff. pointer
0657 PUSH ;Save DE since output
; will kill zt.
0658 CALL ;0utput space
0658 POP :Restore DE
065C DEC :DEC space left in buffer.
065D DEC :DEC # <SPACE>"S till next TAB pos.
065E RET ;RETURN if finished
065F% JR ;JP back and check

; for space in buffer.

;% BREAK sets carry and places CR (0D) at buffer pointer loc.

jFRRRik iR
0661l sCr ;8et carry flag for break detect
;<ENTER> BEGINS HERE ALSO.
0662 PUSH ;8ave flags
0663 LD ;LD <ENTER> character
0665 LD ;Place in buffer

6-31

Rom Disassembly: I/0

0666
0669
0668
066E

066F
0670
0671
0672

0673

0674
0676
0679
067¢
067F
0681
0682
0683

0685
0687
0688
0689
068B
068E
0690

0693
0696

0699
0694
069C

069F

06A1
0644
06A7
0644
06AC

CALL
D
CALL
1D

SUB
LD

POP
POP

H Lt e

3*COLDST: Coldstart Routine

3 FE RS AR RK

COLDST ouT

LD
LD
D
LDIR
DEC
DEC
JR

Lp
1b
INC
DJNZ
1D

AND
JB

Lp
Lb

ING
cp
JP

s EESRR R E R
3 *DISKBT: Disk boot strap
; Fdedddk ik

DISKBT LD

LD
LD
1D
LD
LD

6-32

;O0utput <ENTER>

sCursor OFF

;O0utput Cursor Off
;Determine number of chars.
3 in buffer

;Subtract current left from max,
;Return in B

;Restore flags

;Return with HL pointing

5 to beginning of buffer.
;DONE !

;Cagsette off

;LD vectors and DCBS to memory
;3 Starting at 4000H

; From O6D2H for 36H locations
sMove!l

;Repeat this procedure

; while RAM warms up

;Zero next 39 bytes of RAM
;Store zero

; INC BAM Pointer

:Loop through 39 locations
;Check for <BREAK>

; at bit 2

3JP to LEVEL II Coldstart

; 1f <BREAK> pressed

;LD Disk boot stack pointer
;Check for expansion interface
3 and disks

;ING Floppy Disk Controller Status
;A status of 00 or FF is bad
3JP to LVLII Coldstart

; 1f missing or busy

;Disk bootstrap loads disk

; operating system by first

5 loading bootstrap on track 00,
; sector 00 on drive 00,

;8tart drive 0

;LD HL, Disk controller address
;LD DE, Disk data register address
;Restore head to track 0

;Delay during head movement

06AF
06B2
0634
0686
0687
06BA

068D
06 BF
06C0
g6C2
06C4
06C5
06C6
06C7
06eC9

06CC
06CF

06D2
06D5
06D8
06DB
06DE
06DF
06E1
06E2
06E4
06ES

06E6
O06E7
06ES8
O6EA
06EC
06ED

06EF
06F0
06F2
06F4
06F5

"
Ha

T

i i u;}-

o
3
*

wa

e

3600

0600

00
01
£303
0000
00
4B49

07
5804
003¢C
00
L44F

E

a

CALL
BIT
JR
X0R
LD
LD

LD
LD
BIT
JR
LD
LB
INC
JR
J?

FRRTRFRTRR

;% BASTIC: This is the proper entry to BASIC to

avold an error

BASIC LD
JP

TkEEE

he rest of the bootstrap section of the ROM from 06D2-0707H

Rom Disassembly: I/0O

;DELAY Call

3;Check FDC Status

;Loop if not ready yet

;Clear A

:Load sector register with zero (0)
;LD BC, Destination of loader

i program (4200H)

;LD Read sector command

;Read sector zero

;Byte ready to be read?

;Loop if no byte ready

;LD byte from disk

;Store in RAM

;INC Pointer

;JP if not a whole sector loaded
;Goto loader!

;Proper re-entry to BASIC
sExit

loaded into RAM by the COLDSTART routine
-

RSTRTIS JP
JP
JP
JP
RET
DEFW
RET
DEFW
EI
RET

DEFB
CEFB
DETW
DEFW
DEFB
DEFM

DEFB
DEFW
DEFY
DEFB
DEFM

0000

0000H

00H
OIH
03E3H
0000H
00H

IKI’

o7H
0458H
3cooy
ocH
“p0”

6~33

1RST"S Loaded into RAM @ 4000H

yEnable Interrupts

;Keyboard device type
iKeyboard driver address

;Keyboard device name

;Display device type

:Display driver address
:Cursor position

;Character at cursor position
;Display device name

Rom Disassembly: I/0

06F7 06 DEFB 06H ;Line printer device type
06F8 8D0O5 DEFW 058DH ;Printer driver address
06FA 43 DEFB 430 :Lines per page + 1 (default 67)
06F¥B 00 DEFB 00u ;Line counter

06FC 00 DEFB 00H

06FD 5052 DEFM “PR” sPrinter device name

O6FF JP

0702 RST

0703 NOP

0704 NOP

0705 LD

0707 RET

0707 ENBPAT EQU ;END OF DATA

0703 NOP

0704 NOP

0705 LD ;Clear “A7

0707 RET

Other I/O Routines

There are a few routines in the ROM which may be
useful +to the assembly language programmer. They are
outlined here since they do not really fit in any of the
chapters describing the individual units.

Did you ever need to get access to the
Program Counter (PC) to £figure out where the current
program is executing in memory? The following routine
loads 'HL' with the contents of the updated PC:

WHERE CALL 0OORBRH ;LD HL,PC

THISAD EQU § :HL will contain the
; address of THISAD
; in memory

Parsing through a buffer is facilitated by one of the
RSTs. RST 16 is used by the ROM to process BASIC programs
in memory, but we can use it to scan a buffer of our own.
Simply point 'HL' to the address one location before the
position of the string and do an RST 16. The routine
increments 'HL' and 1loads the <character into 'A'. The
flags are set to denote the type of <character; 1f the
% flag is set, the character in 'A' is either a O0O0H or a
colon (:). The Carry flag is set if an ASCII number is
found (#-9). This routine skips tabs, linefeeds, and
spaces.

LD HL,BUFPOS-1 ;Start position
: in the buffer

RST 16 :Parse buffer
JP %, ZERCLHN :JP if 00H or colon
JP C,2705 s JP if @ thru 9

: (30H-39H)

Other I/0 Routines

The Z80 cannot directly compare two 16-bit registers.
The ROM has a built-in routine +to perform such a function.
The 'HL' register is compared to 'DE', and 'A' is lost.
The flags are set depending on whether 'HL' is equal to,
less than, or greater than 'DE'. If *BL' = 'DE', the
z flag is set. If 'HL' < 'DE', the Carry flag is set. The
interface is as follows:

LD HL,A :Load lst number
LD DE,B sLoad 2nd number
RST 24 ;CP HL,DE

JP Z+AEB ;3P if HL=DE

Jp NC,AGTB ;JP if HL>DE

JP C,ALTB ;JP if HL<DE

If you need to delay for a period of time before
continuing a process, simply lcad "BC' with a count of
1AAT7H for each tenth of a second and call DELAY:

LD BC,DPLYCNT ;Load delay count
DELAY CALL 006CH ;Delay

Ever want to route output to a device depending on a
flag? The ROM routine DSPCHR does just that. It uses the
OUTBFL, at 409CH. If the flag has bit 7 set, output goes to
the cassette. If net a zero (00H), output to the
lineprinter. If equal to 2zero, output to the video. This
routine maintains the CRTPOS at 40A6H {(current 1line
position on the video). However, this routine does have a
catch (or in this case, hook). One of the first commands
in this routine is a CALL to 41ClB. 1If you are running
under vanilla Level II, this address should contain a RET.
If you are under an 0S8, it may contain a JP instruction. BE
CAREFUL!

’-******
:* Check hook at 41Cl1H!
;* before calling DSPCHR

pRAKEAK
LD A,CHAR ;Load character to
; output
DSPCHR CALL 032AH :Display char on

; current device

Other I/0 Routines

If you use the above routine, you may wish to use the
RSTDEV routine at 038BH to restore the current device to
the video display.

The INCHRS routine {at 0361H) is present which inputs
up to 240 characters into a buffer using the BUFFIN routine
at 05D9H. It places a 00H as the last character in the
line to replace the carriage return. Upon exit, 'A' is
zero if the input ended with an ENTER. The Carry is set if
the BREAK was hit. 'HL' ©points to the beginning of the
buffer minus one. Here we also find a hook to 41AFH. Be
sure to consider this in your programming.

;******
:* Check hook at 41AF!
;******
D HL,BUFFER :Address of input
; buffer
INCERS CALL 0361H ; Input max 240 chars
INC HL :HL to begin of
; BUFFER

Another routine that uses INCHRS (361H) is QINPUT at
iBB3H. It will print a question mark and a space on the
gscreen and then will accept up to 240 characters. The
address of the pointer to the input buffer 1is in INBUFFP
located at 40A7H. Remember the disk hook at 41AFH!

The following routine outputs the buffer pointed to by
'HL' to the current device wusing the DSPCHR routine,
located at 032AH. The routine keeps outputting until it
finds a 00H which marks the end of the data and which is
not output,.

;******

;¥ Check DSPCHR hook at 41C1lH

;*****i

LD HL,BUFFER :Point to buffer
MSGOUT CALIL 2B75H ;Output buffer until

; a 00H

The next chapter contains items that didn't
conveniently fit anywhere else. They include a discussion

7-3

Other I/0 Routines

of the RANDOM routine and several examples of real head
scratching uses of Assembly language contained in the
Level II ROM.

Random Ramblings

Did you ever wonder how the command RANDOM works?
Well, first let's do a little test. Turn on your computer
and go to Level II BASIC. How, do a PRINT RND(0}) and
record the result {was it .7687097). Turn off the
computer. Wait about 30 seconds and turn it back on. Go
back into Level II do the same thing. You should get the
same value. You see, there is no random number generator
in the TRS-80 BASIC. It always starts at the same value
upon power-up and proceeds to produce the numbers in the
same series. Of course, the mathematical formula used to
produce these "random" numbers gives us the impression that
they are rarndom sincCe they are not in an obvious series.

The RND function uses a set algorithm to find the
next random number, using a "seed" as the starting point.
Well, BASIC has supplied a method of beginning at an
undeterminable starting point by using the RANDOM command.
However, after a bit of logical thinking, we come +to the
same conclusion: "How can 1t pick a RANDOM starting point
if it has to do it wusing a set algorithm?” We could
checksum memory {adding the contents of each byte and
throwing away the carries), but even after that relatively
long process, the end value may not be random (although it
probably would be, in most cases). The solution is rather
interesting.

Have you ever heard of the refresh register? You
know, that funny register which we can't really use but 1is
included in the instruction set. Oh yes, you remember;
that's the one which has the constantly cihanging value that
the CPU uses to refresh the memory chips! Starting to see
the light?

RANDOM simply loads the accumulator with the value in
the refresh register 'R' and stuffs it into part of the
seed of the ERND function. Look at the simple routine at
01D3H. This command 1is used so seldomly that some
disassemblers don't even take it into consideration.

g-1

Random Ramblings

Remember looking at the disassembly of the ROM and
seeing something like this:

0133 AF XOR A
0134 013ES80 LD BC,B03EH
0137 O013E01 LD BC,013EH

It doesn't make a great deal of sense. Look
carefully. Notice that the second byte of each of the
LD BC instructions has a 3EH. Hmmmm. Coincidence? No, it
is actually the Z80 opcode <corresponding £oc a LD A,n.
Let's take a loock at how the source code could have looked:

0133 AF ENT1 XOR A ;Flag=2

0134 01 DEFB 01 ;Hide next instr with
; a LD RC

0135 3E8BO ENT2Z LD a,80H ;Flag=M

0137 01 DEFB 01 :Hide next instr

0138 3E01 END3 LD A,01H ;Flag=NZ

This structure is used several times throughout the ROM to
provide entry points to a single routine which set a
different flag depending on which entry is used. The 0lH
could be changed to a 11H to hide the next instruction with
a LD DE or a 21H for a LD HL. The code to use depends on
which register pair does not <contain information which
should not be destroyed. Since the ROM 1is using HL and DE
at most times, BC is the choice.

Another strange little bit of code one sometimes sees
is like this:

PUSH HL
POP HL
PUSH HL
POP HL

This is not designed to make sure that the value is REALLY

there. It is used as a short delay, usually for an I/0
latch to be set before testing for status, such as with the

floppy disk controller. Sometimes this routine will be
replaced with

EX {SP) ,HL EX {SP) ,IX
EX (SP) ,HL or EX (SP),IX

Random Ramblings

EX (SP} ,HL EX {8P) ,IX
EX (5P} ,HL EX (sP),IX

which also function as delays, but use up a little more
time. If you use these techniques, be SURE that each PUSH
is matched with a corresponding POP and that the EXchanges
are done in pairs. If you don't you will change the stack,
creating unpredictable results.

Did you ever wonder why the HALT instruction
(Op~code 76H) causes a reboot? HALT is normally used in an
interrupt-driven machine to cause the CPU to halt execution
until an interrupt occurs. The folks at Radio Shack have
tied this signal to the Non Maskable Interrupt, so a HALT
is the same as hitting RESET.

Did you ever want to disable the BREAK key in a BASIC
program? It is rather simple to do. You see, BREAK is
considered a "character" by the keyboard driver {the value
of a BREAK is 01H). At the end of the driver at address
0453H, it checks to see if the character being returned is
a BREAK (C1H). If it 1is, it performs an RST 40, which
under DOS 1is an entry to DEBUG. So, we simply <change the
R5T wvector to modify the value in the accumulator to
whatever we want. Here's an example:

1000 BREAK=16396 '&§H400C
1010 POKE BREBK,62 '&H3E (LD A,N)
1020 POKE BREAK+1,0 'Totally disable break

1030 POKE BREAK+2,201 'RET
1040 PRINT "BREAK HAS BEEN DISABLED."

How about this one:

1000 BREAK=16396 '&H400C
1010 POKE BREAK,62 '‘&H3E (LD A,N)
1020 POKE BREAK+1,191 'PLAG BREAK PRESSED

1030 POKE BREAK+2,201 'RET
1040 CLS: PRINT "Updating Database....":
PRINT " PLEASE do not hit BREAK"
1050 REM *** QUpdate database here, checking keyboard
1060 REM *** input as follows:
1070 AS=INKEYS:
IF AS$=CHRS$ (191) then 2000

Random Ramblings

1080 REM *** Continue updating database
1090 POKE BREAK+1,1 '"They've been good, restore BREAK
1100 PRINT "Thank you for you patience,":END
2000 CLS: PRINT "You obviously do not follow directions,":
PRINT " even when you are asked politely!"
2010 PRINT "Just for that...™:
PRINT " CLEARING DATABASE"
2020 REM *** Clear database here
2030 GOTO 2030

Somehow, I get the feeling that this may come back to haunt
me---

Well, we seem to have run out of chapters at this
point, but we still have enough Appendices to outfit a
baseball team. There are several tables that we felt that
you would need, and we have provided drivers for the I/0
devices. They may not be fancy, but they do demonstrate
the technigques that we have been discussing.

8-4

Appendix A: Label Table

The following list was developed to supply the assembly language programmer
with a quick reference to routine entry points, I/0 areas, storage areas, and
pointers. It was pot designed as a czomplete interfacing guide. Labels listed
for the wvarious addresses provide a meaningful code-word giving some indication
of the wuse(s) of the routines or areas. Address locatioms not described in
this volume are either self-explanatory, may be found in Radio Shack reference
manvals, or are discussed in other volumes, This list is sorted alphabetically

by labels. For a similar list, sorted by address, one can refer to Appendix A
in Volume I.

= N —

:u-A"‘I 1}
< o (S it
k'
A
f ¥ .
5 y
¥|

a7

START END

1364
136€
1374
1384
07FD
0801
0805
0834
(841
143C
1474
147F
1482
1486
148A
1594
1598
159¢
1540
15E4
15E8
15EC
15F0
15F&
15F8
15FC
1600
37%0
403E
404C
407F
409F
40AD
4030
0977
0C5B
4410
2497
0c77
070B
0BD2
0716
208F
0708
25FD
40FB
ZA0F
OE65
4130
0E6C
OFBE

1368
1373
1378
1388
0800
0804
0808
0839
0846
1441
147D
1481
1485
1489
148D
1597
1598
159F
1543
13E7
15EB
15EF
15F3
1587
15FB
15FF
1603
37FF
403F
4LO4F

4032

0C6F

40FC

LABEL

ABORT
ABS
ABBINT
ACTINT
ADD
ADDDBL
ADDHL
ADDINT
ADDSNG
ADDSTR
ADHALF
AND
ARRAYS
ASC
ABCBIN
ASCBUF
ASCINT
ASCUSG

(interrupt processing under DOS)

DESCRIPTION

PBL: 1D+10

DBL: 1D+15

DBL: 1D+1i6

DBL: 1D+16

SNG: .598979

SNG: 981471

SNG: 2.88539

SNG: -.5 into BCDE
SNG: .693147 into BCDE
SNG: 1.4427

SNG: -~1.41316E-4
SNG: 1.32988E~3
SNG: ~8.30136E-3
SNG: 0416574

SNG: -0.166665

SNG: 39.7107

SNG: ~76.575

SNG: 81.6022

SNG: -41,3417

SNG: 2.86623E~03
SNG: -0.0161657

SNG: 0.04290096

SRG: ~0.075289%

SKG: 0.106563

SNG: -0.142089

SNG: 0.199936

SNG: -0.333331

Same as 37EQ-37EF
Unused under Level II
Unused under Level II
Upused under Level II
Inused under Level II
Unused under Level IT

ABORT under DOS (unused under LII)
(Bemd D9H)
Take absolute value of integer
Activate an interrupt task

(Bemd CDH)

ABS

-+
Add do

{HL) + FPA1l -> FPAl

Intege

uble

r add

Add single precision
Concatenate two strings

FPAL +
And

Asc

(Bemd D2H)
Pointer to beginning of arrays
(Bemd F6H)
Convert ASCII buffer to binary value

Numeric work area: converted binary to ASCII number
Convert ASCII buffer to integer value

Convert ASCII from “USING ™ routine

A-2

START END

158D
15E3
1A5A
40E4
2008
40E1
40E2
1460
06CC
1650
OFBD
4445
273D
05D9
0040
0000
0ADB
4309

0982
1963
O0AF4
2ALlF
OATF
1E3D
(955
1E7A
2C1F
4185
4428
021E
g1c9
4173
4405
1822
1DE9
2169
0674
37DF
4052
37DE
42E8
1DE4
1E5A
1541
0A78
0A39
0A0C
0241
0235
0296

1607

40E5

40E3

1820

0673

0963

0228

2177
Q6CF

4053

0260
0240

LABEL

ATN
ATNTBL
ATOOFF
AUTINC
AUTO
AUTOFL
AUTOLN
AUTOON
BASIC
BCTBL
BINASC
BKSPA
BSERR
BUFFIN
BUFFNV
CBOOT
CDBL.
CDRVBT

CHGSGN
CHEMEM
CHKSTIR
CHR
CINT
CRAZZ
CKRMZP
CLEAR
CLOAD
CLOSE
CLOSE
CLRCFF
CLS
CMD
CHDINT
CMDTBL
CNERR
COFF10
COLDSE
COMDAT
COMINT
COMSTA
CONO
CONT
CONVRY
CoSs
CPRDBL
CPRINT
CPRSNG
CRBIT
CRBYTE
CRLDR

DESCRIPTION

Atn (Bemd E4H)

Arctan data table

Turn AUTO off

Auto increment

Auto (Bemd B7H)

Auto flag (Non-zero=ON. Zero after BREAK)

Auto line number

INC to new AUTO line number

Proper re—entry to Level II BASIC

BASIC command table (b7 of lst char. of reserved word high)
Convert binary value to ASCII

Backspace a file

Subscript out of range error

Buffer input routine

Vector to buffer input routine (BUFFIN)

ROM Level II Bootstrap

CDBL (Bemd F1H)

Current drive being used with correct bit pattern
already calculated and stored at this address.
Change sign routine

Check if enough memory available

Check type for string and TMERR if not

Chr$ (Bemd F7H)

CINT {Bemd EFH)

Check if a character A-Z

Tests values for Minus, Zero, or Plus

Clear {Bcmd BEH)

CLoad (Bemd B9H)

CLOSE: {DBemd A6H)

CLOSE (pos file call. P#6-11)
Clear CFY

CLS {Bcmd 84H)

CMD: {DBcmd 85H)

Command Interpreter entry point

Entry points for command table (BCTBL)
Can”t continue error

If cassette 1s on, turn off

Cold Start

Communication Data Address
Communications interrupt vector
Communication Status Address

Constant: 0

Cont {Bemd B3H)
Convert bytes in buffer to two-byte DE value
Cos (Bemd E1H)

Double precision compare
Integer compare

Compare single precision

Read bit from cassette

Read byte from cassette

Find sync., put stars im corner

A-3

START END

401E
0033
4023
401D
3¢00
033A
40A6
3co0
3E40
3E80

3ECO-

3700
rs0
3F80
3FCO
3c40
3c80
3Cco
3b00
3p40
3D80
3DCO
3E00
401D
2BF5
37E4
0AB1
022¢
029¥
403D
0075
0023
01F8
O1FE
0293
0284
430C
4022
4304
4308
40A2
40EC
4308
4020
4008
415E
4152
4158
0261
01D9
0264

401F

4024
4024
3FFF

3C3F
3E7F
3EBF
3EFF
3F3F
3F7F
3FBF
3FFF
3C7F
3CBF
3CFF
3D3F
3DIF
3DEF
3DFF
3E3F

0234

02A8
(0292
430D

430B

4043
40ED

4021
40D9

0283
01¥7

LABEL

CRTADR
CRIBYT
CRTCON
CRTDCB
CRTMEM
CRTOUT
CRTPOS
CRTR1
CRIR10
CRTR11
CRTR12
CRTR13
CRIR14
CRTR1S
CRTR16
CRTR2
CRTR3
CRTR4
CRTRS5
CRTR6
CRTRY
CRTRS8
CRTRY
CRITYP
CSAVE
CSELCT
CSKG
CSTAR
GSTARS
CSTATU
CSTLIL
CTLBYT
CTOFF
CTION
CTONRL
CTONWL
CURBUF
CURCHR
CURDCB
CURDRV
CURLIN
CURNUM
CUROVL
CURPOS
CURTIKN
CvD
CVI
Ccvs
CWZBYT
CWEBIT
CWBYT

DESCRIPTION

Driver address (0458RH)
Display byte in "A” at cursor (DE lost)

Constant:
Video DCB

Do

Video display memory

Qutput “A” to video (DE saved)
Current line position on Video
Row 1 on CRT

Row 10
Row i1
Row 12
Row 13
Row 14
Row 15
Row 16
Row
Row
Row
Row
Row
Row
Row
Row
DCB Type
CSave

Cagsette
CSNG

Won -3 M Bl

(07)
{Becmd BAH)

select latch address
{Bcmd FOH)

Change star in cormer for cassette operatiomns
Put stars in cormer

Cassgette

status byte

Cold start for Level II BASIC

Qutput a
Cassette
Cassette
Cassette
Cassette

control byte to a device.

of f

on

on, find syne., put stars in corner
on, write leader and sync. byte

Currently active I/0 buffer for file reads/writes.
Cursor character

Address of currently active DCB

Current drive being used

Current line number

Current line number

Current overlay in memory

Cursor position on screen {(L,H)

Stores pointer to current token

CvVD:
Cvl:
CVSs:

(DBemd E8H)
(DBemd E6H)
(DBemd E7H)

Write byte to casgette twice
Write bit to cassette
Write byte to cassette

A-&

START

0287
199A
1705
40A9
4470
40FF
37EF
4045
2CAS5
4152
D33
0D45
0ABY
006D
1930
4419
2733
440D
405D
505K

405F
4060
4062
4063
4065

4315
4158
1EQ9
0212
4473
1E03
1E06
1E0Q
0060
2ZBC6
2286
2608
4300
06 9F
0897
0DE5
2490
4080
08A2
OF18
40AE
0105
4318
4200

END

4100

2CA8
41A5
0D44
0Db56

1934

4061

4064
407C

4317

021D

0065
2294

43067

408D

0l1c0
4347
42FF

LABEL

CWLDR
DOERR
DATA
DATAFL
DATE
DATPTR
DATREG
DAY
DBAD
DBJPVS
DBLMA
DBEMS
DBLSNG
DBOOT

_DBREAK
DCTTESK

DDERR
DEBUG
DEBUG1
DEBUGZ

DEBUG3
DEBUG4
DEBUGH
DEBUGSH
DEBUGS

DEBUGYV
DEF
DEFDBL
DEFDRV
DEFEXT
DEFINT
DEFSNG
DEFSTR
DELAY
DELETE
DEXTIC
DIM
DIRTRK
DISKBT
DIV1Oo
DIVDBL
DIVINT
DIVRAM
DIVSNG
DIVTEN
DLFLG
DMEMSZ
DOSBUF
DOSIOB

DESCRIPTION

Write leader and sync. byte

Division by zero error

Data (Bemd 88H)

Data statement flag

Returns DATE iuto 8-byte HL buffer

Pointer to delimeter after last DATA Value read

¥loppy disk data register

Day

Data "BAD<CR>"

Disk BASIC jump vectors

Double precision mantissa addition

Double precision mantissa subtract

Convert double to single

Vector to disk bootstrap

Data "Break"

Deactivate an interrupt task

Redimensioned array error

Enter the real-time debugging facility

Debug: A or B (ASCII or H) or LSB of first breakpoint

Debug: 0=Normal screen, <>0 = Full screen:
or MSB of first BREAKPT

Debug: Imstruction byte at breakpoint

Debug: Second breakpoint or single-step

Debug: Instruction byte at second breakpoint

Debug: Address currently being displayed om screen

DEBUG: Register save area
(AF,BC,DE,HL,AF” ,BC” ,DE”,HL”,IX,1Y,SP,BC)

Debug vector

DEF: (DBcmd BOH)

Defdbl {Bemd 9BH)

Define cassette drive from “A7

Add default file extension

Defint (Bemd 99H)
Def sng {Bcmd 94H)
Defstr {Bemd 98H)

Delay routine (BC=Counter., 14.66 msec/loop)
Delete {Bemd B6H)

Data "?Extra ignored”

Dim {Bemd 8AE)

Locations of the directory tracks of the different drives
Disk bootstrap

FPALl / 10 =-> FPAl

Double precision division

Integer divide

RAM used with single precision divide
Divide single precision

Divide by tem (10)

Dimension/Let flag from parser

Data "MEMORY SIZE"

DOS Command buffer

DOS I/0 buffer for sectors from disk

A-5

STAAT

4049
402p*
1928
2178
03C2
0046
0111
37El1
407D
5200
0324
2E60
1F07
1DAE
31FF
40FD
1ALS
4161
41A6
24DD
24CF
40F2
40EA
409A
1FF4
40F0
1942
18C9
1439
1479
4125
1E4A
37EC
218A
417G
0B26
4155
249F
1cal
40BC
4121
&124
0778
4121
4127
09cCB
27D4
1608
417¥
0314
0049

END

4044
402F
192E
217D
03E2
0128
407E

6FFF
0347

40FE

40EB

40F1
18F6

1499

4124
4123

412E

031c
004F

LABEL

DOSMEM
DOSVEC
DREADY
DREDO
DRIVER
DRIVRV
DRSL2ZB
DSELCT
DSKBSP
DSKUTL
DSPCHR
EDIT
ELSE
ERD
ERDOVR
ENDVAR
ENTLII
EQF
ERHOOK
ERL
ERR
ERRFLG
ERRLIN
ERRNBR
ERROR
ERRPRC
EREPRT
ERRTBL
EXP
EXPTBL
EXPWRE
FCERR
FDCADR
FDERR
FIELD
FIX

FN
FNSCAN
FOR
FORFLG
FrPal
FPALE
FPA1EZ
FPAIM
FPAZ
FPAMEM
FRE
FUNTBL
GET
GETADR
GETCHR

DESCRIPTION

DOS memory size determined at power-up

DOS Transfer Vector

Data "READY<CR>"

Data "7REDO"

1/0 Driver

Vector to I/0 driver routine @ 03CZH

Data "RADIO SHACK LEVEL II BASICLCR>"

Disk drive select latch address

Disk boot stack pointer beginning location
Disk BASIC/DOS utilities/User memory
Display byte on current device (Device flg @ 409CH)
Edit {Bemd 9DH)

Else {Bemd 95H)

End (Bemd 80H)

End of DOS overlay ares

End location of array variables

Entry point to Level 11 BASIC

EOF: (DBcmd E9H)
Hook to Disk BASIC for long error msgs.
Erl {Bemd C2H)
Err (Bemd C3H)

FFH after error. Zero if no error
Line containing error

Level II Error

Error (Bemd 9EH)

Address of “ON ERROR"

Cutput an error msg

Error abbreviation table

Exp (Bemd EOH)

Exp data table

Exponent work area

Illegal function call error
Floppy disk controller address
Bad file data error

FIELD: (DBemd A3H)
Fix {Bemd ¥2H)
FN: (DBcmd BEH)
Scan for functions

For (Bemd 81H)

Set to 64 on FOR loop. Prevent subscripted variable,
Floating Point Accumulator

Characteristic (exponent)

Zero exponent of FPA]

Mantissa

Floating Point Accumulator #2

Transfer FPAl to (HL)

Fre (Bcmd DAR)
Function Table
GET: (DBcmd A4H)

Get a 2 byte address from tape {Ret in HL)
Scan keyboard waiting for input. (DE lost)

A-6

START END LABEL DESCRIPTION

1E4F 1E79 GETLN Scan line for line number

1EB1 GOSUB Gosub (Bcmd 91H)

1EC2 GOTO Goto {Bemd 8DH)

0132 01C8 GRPHCS Graphics Routines

3249 GSYSTR Get transfer address for system

0384 038A GTDCHR Get ome char. input from keyboard. (DE saved)
1E4F 1E79 GTLFUM Get line number

4410 GTSPEC Get a file specification from buffer

1488 1491 HALF SKG: .3

1588 158E HALFPI SNG: 1.5708 (PI/2)

137C 1384 HLFDBL DBL: .5

09B1 HLFPAlL (HL) --> FPAl

QACF HLSNG Convert HL to single

1894 HRCHY Algebraic heirarchy table
4043 HRS Hours

2831 IDERR Illegal direct error

2039 IF If (Bemd 8FH)

40A7 40A8 INBUFP Input buffer pointer

0013 INBYT Input a byte from a device

0361 0383 1INCHRS Imput up to 240 chars. into “HL” buffer.
End of lime has zero byte.

1B4D INIT Initialize work area

4420 INIT INIT (D0S file call. P#6-8)
019D INKEY Inkey$ (Bemd C9H)

2AEF INP Inp (Bemd DBH)

4093 4095 INPRAM INP function (93 = "IN" instruction, 94 = port, 95 = Ret)
219A INPUT Input (Bemd 89H)

419D INSTR INSTR: {DBcmd CSH)

0B37 INT Int {Bemd D8H)

0859 O0OB9D INTDBL Take integer of double

404C INTENB Interrupts enabled {bit mask)
37E0 INTLAT 1Interrupt Latch Address

404B INTMSK Interrupt mask

0B3D O0B58 IRTSNG Take integer of single
404D 405C INTTBL Interrupt jump address for interrupts (-7
41E6 42E7 I10BUFF 1I/0 Buffer

4033 4035 IODERR Called by driver after illogical driver call
3801 KE1 lLocation for: EABCDETFG
3802 KB2 Location for: HIJRKLMNO
3804 XB3 Location for: PQRSTUV W
3808 KB4 Location for: X Y 2
3810 KBS Location for: 01 23 456 7
3820 KB6 Location for: 8 9 : ; , - . [(Also ()%+<=>7)
3840 KB7 Location for: Enter Clear Break
Arrow D.Arrow L.Arrow R.Arrow Space

4018 401C ¥BCONS Comstant: 0 0 O X I
4016 4017 XBDADR Driver address (03E3H)
0358 0360 XBDSCN Scan keyboard. {DE NOT LOST)

4036 KBIMlI OlH
4037 KBIMZ 0ZH
4038 KBIM3 04H

START END LABEL DESCRIPTION

4039 KBIM4 O8H

403A KBIMS 10H

4038 KBIM6 208

403C KBIMY 40H

4036 403C KBIMAG FKeyboard image

0028 KBSCAN Keyboard scan return irput in A. (DE lost.)

0050 005F KBTBL Table of Special Characters for keyboard routine
4015 KBTYP DCB Type (01)

4099 KEYBUF Inkey$ buffer or flag (last key hit on keyboard)
4015 401C KEYDCB Keyboard DCB

03E3 0457 EEYIN Keyboard scan driver

3800 3BFF KEYMEM Keyboard memory (1,2,4,8,10,20,40,80E)

4191 KILL KILL: (DBemd AAH)

442C KILL KILL (pos file call. P#6-11)

0000 2FFF L2ZROM Radio Shack Level II BASIC ROM

4000 4014 L2VECS lLevel II fixed RAM vectors

0120 L3ERR Level III errox

7FFF LADI6K 1last RAM address in a 16K TRS-80

BFFF LAD32K Last RAM address in a 32K TRS-80

FFFF 1AD48K Last RAM address in a 48K TRS-80

4FFF LAD4K Last RAM address in a 4K TRS-80

0987 LDFPAl Load FPAl into BCDE

09c2 LDFPHL Load real value pointed to by HL

2461 LEFT Left$ (Bemd F8H)

2403 LEN Len (Bemd F3H)

J1F21 LET Let {Bemd 8CH)

41A3 LINE LINE: (DBemd 9CH)

409D LINLEN Maximum length of a line on the screen
2B2E LIST Llist (Bcmd B4H)

4OE6 40E7 LLEND Points to end of previous line or current line
2829 LLIST LList (Bemd B5H)

4188 LOAD LOAD: {DBemd A7H)

4430 LOAD Load a machine language format file
4164 10¢ L0C: (DBecmd EAM)

4167 LOF LOF: {DBcmd EBH)

0809 106G Log (Bemd DFH)

4047 4048 LOW Containg address of lowest byte of avail. mem under DOS
039C 03C1 LPDCHR Output byte im “A” to printer (DE saved)
2067 LPRINT Lprint (Bemd AFH)

37E8 LPTADR lLine printer address

4026 4027 LPTADR Driver address (058DH)

00338 LPTBYT Send byte in “A” to printer (DE lost)

402A 402C LPTCON Constant: 0 P R
4025 402C LPIDGB Lineprinter DCB
058D 05D8 LPTDRV Printer driver

4029 LPTLCT Lime counter

4028 LPTLPP Number of lines/page

4098 LPTPOS Line printer line position
4025 LPTTYP DCB Type (06)

2943 LSERR String too long error

4197 LSET LSET: (DBemd ABH)

A-8

START END LABEL DESCRIPTION

40B1 40B2 1LSTBYT Address of last usable byte in memory {BASIC)
40DA 40DB LSTDTL Last data line number read

27C9 MEM Mem (Bemd C8H)

00C4 00D5 MEMSIZ Determine memory size

4188 MERGE MERGE: (DBemd A8H)
2A9A MID Mid$ (Bcmd FAH)

4042 MINS Minutes

0AA3 O0AA8 MINVAL SNG: -32768 / BCDE

4170 MKD MKDS: (DBcmd EEH)

4164 MKI MEIS: {DBcmd ECH)

416D MKS MKS$: {DBcmd EDH)

4046 MO Month

24A0 MOERR Missing operand error

09D3 MOVDAT Move data from (HL) --> (DE)
2B75 MSGOUT Output a msg until zero (0)
0DAl MULDBL Double precision multiply
0BF2 MULINT Integer multiply

0847 MULSNG Multiply single precision
418E NAME NAME: (DBcmd A9H)

40F7 40F8 NBIBP Ptr to next byte to be used with "CONT"
1492 1495 REGONE SNG: -1.0

1849 NEW New (Bemd BEH)
22BC NEXT Next (Bemd 87H)
199D NFFRR Next without For error
0066 (0074 WMI Non~maskable interrupt
1A76 NOAUTO Auto~off line input
2FC4 NOT Kot {Bcmd CBH)
198A KRERR ¥o resume error

2212 ODERR Out of date error

22A0 ODERRZ OQut of data error (also @ 2212H)
1974 OMERR Out of memory error
1F6C ON On (Bemd AlH)

07F8 O(O7FBE ONE1l SNG: 1.0

1496 1499 ONE2 5HG; 1.0

1604 1607 ONE3 SNG: 1.0

4179 QOPEN OPEN: {DBcid A2H)

4424 OPEN OPEN (pos file call. P#6~9)

4476 OPTION Get optional command flags from buffer
25F7 oR Or (Bcmd D3H)

28DB OSERR Out of string space error

2AFB OUT Out (Bemd AOH)

409C QUTBFL Output bit flag: 0=Video, l=Lp, 80=Cassette
0018 QUTBYT Output a byte to a device

20FE CUTCR Qutput a8 CR to current device

4467 QUTLIN Output a line to the CRT

28A7 OUTLN Output a line until zero (0)

4464 QUTL? OQutput a line to the printer

4096 4098 OUTRAM OUT function (96=0ut,97=port,98=Ret)
(0782 OVERR Overflow error

430F OVLDBG Overlay/Debug flag

13p8 13El Pl0TAB Power of tem table: 10000,1000,100,10,1

A-9

START

2C8A
2CAA
227¢C
4044
4LOEE
0132
2CB1
0840
27F5
4448
0348
4442
4409
13F2
206F
409E
05p1
40D8
4182
1BB3
158F
01p3
40DE
21EF
4436
1425
411D
411D

0138
40FF
1b91
1FAF
1EDE
443F
1EEA
2491
14C9
4090
40AA
4194
0010

1078
4003
0018
1cs0
4006
0020

25P9

END
2C92

2285
40A5
40EF

0357

1592

4124
4120

4040

4092
40AC

1090

1¢95

LABEL
PBAD
PEEK
PEXTIG
PGMBGN
PLEND
POINT
POKE
POPFPA
POS
POSEQF
POSIND
POSN
POSTER
POWER
PRINT
PRNTZN
PSTATU
PUCBYT
PUT
QINPUT
QUARTR
RANDOM
RDINFL
READ
READ
READY
REALS
REALSM
REM
RESET
RESTLN
RESTOR
RESUME
RETURN
REWIND
RGERR
RIGHT
RND
RNDMUL
RNSEED
RSET
RST16

RST16
RST16
RST24
RST24
RSTZ4
RST32

R8T32

DESCRIPTION

Prints “BAD" on screen

Peek {Bcmd ES5H)

Load "7Extra ignored”

Pointer to start of BASIC program
Pointer to previous line end

Point {(Bemd C6H)
Poke (Bemd BIH)
Restores old BCDE from stack
Pos {Bcmd DCH)

Position a file to EQF

Line position indicator

POSN (DOS file call. P#6-~9)

Post error message entry point

Raise to a power (Ex: X raised to the N, X#*N)
Print (Bcmd B2H)

Next print zome (reached after a comma as in ?7A,B,C)
Test printer status. Z Flag set if ready.
Printusing control byte: Bit2=% 3=+,4=%,6=Comma
PUT: (DBemd ASH)

Print "? ". Input up to 240 characters

SKG: .25

Random (Bemd 86H)

Read/Input flag: Non-zero=read / Zero = input
Read (Bemd 8BH)

READ (DS file call. P#6~9)

Load "READY" message

Double precision variable

Extended mantissa : Double precision

Rem (Bcmd 93H)

Reset (Bemd 82H)

Used with RESTORE. Keeps current line number for "READ"
Restore (Bemd 90H)

Resume {Bemd 9FH)

Return (Bemd 92ZH)

Rewind a file to the beginmning

Return without Gosub errtor

Right$ (Bemd F9H)

Rnd {Bcmd DEH)

Mantissa of multiplicative constant for RND

RND function seed '

RSET: (DBemd ACH)

INC HL. If (HL) is ASCII 0-9 SCF.

If value is zero, set Z flag. Skips spaces.

Inc KL/ If (HL) is ASCII 0-9 SCF.

RST16: 1P78; INC HL/If ASCII 0-9 SCF/Set if Z/Skip Spa
CP HL,DE {A lost.)

CP HL,DE (A lost)

RST24: 1C90; CP HL,DE (A lost.)

P/U TYPFLG at 40AFH. If <8 SCF. RRT.

Flage set as a result of type. M=Int.,Z=Str,P0=SNG,NC=DBL
From RST 32: P/U flag @ 40AFH. If <8 SCF, RRT.

A-10

START END

4009
0028
400G
0030
400F
0038
4012
0¢08
1C96
4000
038B
¢6D2
4040
1EA3
4433
19040
4140
OASA
1588
40F9
37EE
4041
0135
CAEC
0A9D
OAEF
098A
098p
3880
1547
1593
1997
09B4
0ACC
1BCO
40E8
1387
0814
0221
2B01
2841
2BIE
0944
1DAS
40B5
2836
40D4
40D6
2AZF
40D3
4040

1CAQ

0398
06DD

1547
40FA

1547

40E9

0819

0980
40D2
40D5
40D7

40A1

LABEL

RST32
RST40
RST40
RST48
RST48
RS5TS6
RST56
RSTS
RSTS
RSTS
RSTDEV
RSTRTS
RTSC
RUN
RUN
RWERR
SAVE
SAVINT
SCDTBL
SCLERS
SECREG
SECS
SET
SETDBL
SETINT
SETSNG
SGN
SGNAE
SHIFT
SIN
SINTBL
SNERR
SNGFPA
SNGINT
SPACK
SPSAV
SQR
SQR202
STATFF
STEP
STERR
STFUNP
STKFP1
STOP
STPRMS
STR
STRADR
STRFRE
STRING
STRLEN
STRNGS

DESCRIPTION

RST32: 25D9; If TYPFLG<S, SCF/RRT/M=INT,Z=S$TR,PO=SNG,NC=DBL
JP DOS command processor

RST40: DOS Command Processor

Debug breakpoint

R8T48: Debug breakpoint

Interrupt Mode 1

R8T36: Interrupt mode 1

(Parser) CP (Syntax)/RST16 if =/Else SNERR
(Parser) CP (Syntax). RST16 if equal. Else SNERR.
RST8: 1C96; (Parser) CP (Syntax)/RST16 IF=/Else SNERR
Reset devices. Set output back to CRT

RST”s loaded into RAM starting & 4000H

25 MSec Real-time scheduling counter

Run {Bemd 8EH)

Load and execute machine language file

Resume without error

SAVE: (DBcmd ADH)

Save integer in HL to FPAl. Vartyp -> Int (2)
Sin/Cos data table

Pointer to beginning of scalers

Floppy disk sector register

Seconds

Set (Bemd 83H)

Change type flag to DBL

Change TYPFLG to INT

Change type flag to single

SGN (Bemd D7H)

Alternate entry point to SGN

Location for: Shift (Electric pencil control key @ 10H)
$in (Bemd EZH)

Sin data table

Syntax error

BCDE (Single precisiom val.) --> FPAl

Convert integer to single

Source pack routine

Stack pointer save area

SQR {Bemd DDH)

SNG: .707107 (SQR(2)/2) into BCDE

Change status of CFF from HL

Step (Bemd CCH)

String formula too complex error

Scan text until zero. Unpack into INBUFP buffer
Puts a real value onto the stack

Stop (Bemd 94H)

String param. area. 3 byte sets. 1ST=Length, 2-3=Address
Str$ {Bcmd F4H)

Address of current string

Next free byte in string area

String$ (Bemd C4H)

Length of current string

Beginning of string area

A-11

START END

40B3
2532
0C70
0710
0BC7
0713
031D
0282
2137
15A8

0DD4-

4176
446D
DAF6
40DF
411B
378D
1DF8
1D¥7
4300
4416
4413
1544
1544
40B0
40AF
4101
2003
1EDY
2CBD
27FE
408E
0A7F
0A%A
2AC5
24ED
443G
0458
000B

40B4

0329

0DDB

40F0

SFFF

154F
1547

411A

408F

058C

LABEL

STRPTR
SUB
SUBDBL
SUBHL
SUBINT
SUBSNG
8¥YSGO
SYSTEM
TAB
TAN
TENDBL
TIME
TIME
TMERR
TRAADR
TRCFLG
TRKREG
TROFF
TRON
TRSDOS
TSKCHG
TSKOFF
TWOPL
THOPL
TYPFL2
TYPFLG
TYPTRL
UEERR
ULERR
USING
USR
USRADR
USRINP
USROUT
VAL
VARPTR
VERIFY
VIDEO
WHERE

DESCRIPTION

String parameter pointer

- (Bcmd CEH)
Subtract double

(HL) - FPAL -> FPAl

Integer subtract

Subtract single precision
Jump to system start address
System entry point

Tab{((Bemd BCH)
Tan (Bemd E3H)
DBL: 10.0

TIMES: {DBemd C7H)

Move current TIME to 8-byte HL buffer
Type mismatch error

Transfer address for system

TRON - AF, TROFF - 0

Floppy disk track register

Troff {Bemd 97H)

Tron (Bcmd 96H)

DOS routines

Change state of an interrupt task
Turn off an interrupt task

SNG: 6.28319 (2 PL) / BCDE

SNG: 6.28319 (2 PI)

Variable type for FPA2

Current variable type (8=DBL, 4=8GL, 3=STR, Z=INT)
Variable types for each letter A-Z
Unprintable error

Undefined line error

Using (Bemd BFH)

Usr (Bemd CLH)

USR function address

Put “USR” function argument in HL
Make HL output of “USR™ call

Val {Bemd F5H)

Varptr (Bemd COH)

Write and verify a file write
Video display driver

Resolve Relocation Address

A-12

01000
01010
01020
01030
01040
01650
01060
01070
01080
(61690
01100
01110
01120
01130
01135
01140
01150
01160
01170
01180
01150
01200
01210
01220
01230
(1240
01250
01260
01270
01280
01290
0l300
01310
01320
01339
01340
01350
01360

Appendix B: Lowercase Driver

H E o e e e L e e R e e e e

S 1C: Lower Case DPriver

Copyright {(c)} 1980

Insiders Software Consultants
PO Box 2441, Dept. LC

Springfield, VA 22152
s RERERARERT RN AR A AR AR R R AR AR R ARk d R ddhdiiiiiind

RELXARIEXR

% % %
* % % % %

This lowercase driver is intended to replace the
driver currently offered by Radio Shack. It
provides UPPER/lower case, auto repeat, debounce,
JKL (screen print optiomn), print switch (output to
screen and line printer at the same time), re-boot
switch, and control key (@) providing control codes
from the keyboard.
Current definition of special characters:

Sh. CLEAR=Underline

CTL-CLEAR=Lineprinter switch

Sh. BREAK=UPPER CASE LOCK

CTL-BREAR=RERQOT!

CTL-UPARR=Circumflex (")

CTL-L.ARR=Left Curly ({)

Up Arr =Left bracket

Sh. R.ARR=Right Bracket (])

CTL~R.ARR=Right Curly (})

CTL-Zero =At-sign (@)

CIL-1 =Fs (1CH)

CTL-2 =GS (1DH)

CTL-3 =RS (1EH)

CTL—~4 =Us (1FH)

CTL=3 =Backslash
* CTL-6 =0R (7CH)
* CTL-7 =DEL (7FH)
* CTL-8 =Tilde ()
* CTL-9 =Pause (Used to be shift-@)
* Note: The codes can be changed to suit your needs
%
%

M M WM U M W WU MY MY WY WY MY W WD W WE W

E N R N B B a2

W NE W W M wd Wk

by changing the values in the ASCII table.
dekdokdokd

Lowercase Driver

401E 01370 CRTADR EQU 401EH ;Video Driver Address
4016 01380 KBDADR EQU 4016H ;Keyboard Driver Addr.
7000 01390 ORG 7000H sMAY BE CHANGED
7000 01400 PLC EQU $;Entry point
01410
01420 ;&&kkissk
01430 ;% The next two lines MUST BE ADDED if you are
01440 3% running under the NEWDOS (not NEWDOSS0) disk
01450 ;* operating system. They disable the NEWDOS
01460 ;% JKL function to avoid a conflict between the
01470 ;% D0OS and the lowercase driver
01480 ;¥¥*rarku
01490 ; LD HL,43B5H
01500 ; LD (HL.),0Cc9H ;NEWDOS ONLY!
01510
01520 ;¥drikkirk
01530 ;* Check for bit-6 static RAM chip present.
01540 ;% If it is not, no lowercase display.
01550 ;=* Machine will be locked into UPPERCASE only.
01560 ;#¥dkiask
7000 21003C 01570 LD HL,3C00H ;Begin of video memory
7003 46 01580 1D B, (HL) ;6et value at location
7004 3EFF 01590 b A,0FFH ;ALL bits set in ‘A7
7006 77 01600 LD (HL)},A ;Store in video mem
7007 BE 01610 op (HL) ;CP mem w/ value stored
7008 70 01620 D (HL),B ;Restore original value
7009 2821 01630 JR Z,LCHOD ;If =, RAM #6 present.
01640 ;¥wwrkidikk
01650 ;* No LC mod present or active. Disable lowercase
01660 ;% functions
01670 j*wikasid
7008 215F71 01680 LD HL ,UCLS+1 ;Address of conversion JR
700E 7E 01690 LD A, (HL) ;Get value
700F EE06 01700 XOR 6 ;8et uppercase mode
7011 77 01710 1n (HL) ,A ;LOCK UPPER
7012 3EC9 01720 LD A,0C9H ;LD A, RET
7014 32DD71 01730 LD (UCLOCK) ,A ;No. LOCK toggle
7017 3EC3 01740 Lp A,0C3H ;LD A,JP
7019 320470 01750 p (NOLP) ,A ;Disable new VIDEO driver
701C 3E38 01760 LD A 58H ;Place a JP 0458H to the
701E 32D5370 01770 LD (NOLP+1) ,A 3;01d video driver
7021 3KE04 01780 LD AL
7023 32D670 01790 LD (NOLP+2) ,A
7026 1804 01800 JR LGMOD s;Execute relocation

7028
7024
702¢C
T02F

7032
7033
7035
7038
7038
703C

703E

7041
7045
7048
7048
704C
704D
704F
7050
7052

7055
7058
705C
705D
7060
7063
7065
7067

0000
0000
019501
2AB140

B7
ED42
222870
01BA70
B7
ED42

222870

Dp216970
DD6601
DDOEQ)
7D

B4

2838

E5

FDEL
FD6EDO

FD6601
ED5B2870
19
FD7500
FD7401
Db23
DD23
18DC

Lowercase Driver

01810 DIFF DEFW 0 ;Relocation constant
061820 1.0AD DEFW t] ;Load address
01830 LCcMOD 1D BC,ZEND-START ;Length of driver
01840 1D HL,(40B1H) ;Get top of memory
01850 ;For DOS, change to 4049H
01860 OR A
01870 SBC HL,BC ;Determine load address
01880 LD {LoAD) ,HL ;Store load address
01890 1D BG,START ;Load the start address
01900 OR A
01910 SBC HL,BC ;Determine relocation

; constant
01920 LD (DIFF),HL iStore relocation constant
01930 ;#**#wmdki
01940 ;% This next section uses a relocation table to
01950 ;* adjust the absolute addresses found in the
01960 ;% lowercase driver. The table contains the address
01970 ;# of a hex address that must be adjusted before the
01980 ;¥ program is moved to its new location in high
01990 ;* memory. This is done by adding the relocation
02000 ;* constant to the curreat value, and restoring the
02010 ;= new value.
02020 ;¥*uxwidak
02030 RELOC LD IX,RTABLE ;Load addr of table
02040 RELOCT 1D H,{(IX+1) ;P{U MSB of address
02050 LD L,(IX) ;P/U LSB of address
02060 D A,L ;Check for end-table=0000H
02070 OR H
02080 JR Z,DRELOC ;If end, DONE
02090 PUSH HL ;LD IY,HIL
02100 POP IY
02110 1D L, (1Y) ;Get absolute address
02120 ; from memory
02130 LD H,(¥Y+1)
02140 b DE, {DIFF) iGet relocation constant
02150 ADD HL,DE ;Correct abs. addr.
02160 LD (17),L jAddress back to memory
02170 iD (1Y+1),H
02180 INC X iNext table location
02190 INC IX
(2200 JR RELOCT ;Loop till end of table

Lowercase Driver

7069
7068
706D
706F
1071
7073-
7075
7077
7079
7078
707D
107F
7081
7083
7085

7087
7084
70838
708E
7091
749
7095

7098
709C
709%
7042
7044
70A7
7049

704B
70AF

0671
0n71
1171
3C71
4071
8b71
A271
B471
B871
G371
DE71
E771
ACT0
B270
0000

2A2A70
2B

22B140
224940
11CEFF
19

224040

ED5BZAT0
21BAT0
019501
EDBO
JADD71
FECY
2806

21BE70
221E40

02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
(2430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650

3Rk
3 ¥ Relocation Table
; FRdkRi Ak
RTABLE DEFW RELL+1
DEFY REL2+2
DEFW REL3+2
DEFW REL4+2
DEFW REL5+2
DEFW REL6+1
DEFW ROSHFT+]
DEFW REL7+2
DEFW REL8+2
DEFW REL9+1
DEFW UCLOCK+1
DEFW LPTOO+]1
DEFW RELO+1
DEFW RELLIQ+]
DEFW 0 ;End of table
;****'k***
¥ Relocation Complete
;*******‘k
DRELOC LD HL, (LOAD) ;Get load address
DEC HL ;Get new top of memory
LD (40B1H) ,HL :Save TOPMEM
1D (40494} ,HL ;Save HIGHS
LD DE,-50
ADD HL,DE ;CLEAR 50
1D (40A0H) ,HL ;Save string area
s HikkRREk
3% Move the program to the new location
hFEEER R
LD DE, (LOAD) ;Get destination
LD HL,START ;LD start address
Lb BG,ZEND-START ;1D length of driver
LDIR ;MOVE!
LD A, (UCLOCK) ;Is there LC mod?
ce 0C9H
JR Z,RELLO 3JB if no LC
3 FkddeRekokk
3% Place the address of the new video driver
¥ in the video DCB to activate driver.
JFEEERIKE
REL{ LD HL ,VPATCH ;New video driver address
LD {CRTADR},HL ;Place in video DCB

B~4

70B1 21F270
70B4 221640
70B7 C3CC06

70BA
70BA 0000
708C 0138
4018
0500

0050

3880

3801

70BE 1814
70C0 C5
70C1 F5
70C2 79
70C3 FE20
7005 3008
70C7 FEO7
70C9 3807
7GCB FEOE
70CD 3003
70CF CD3B00
70D2 Fl
7003 €1
70D4 DD6ED3
70D7 DD6604
70DA DA9ADSL
70bD DD7EQS
70E0 B7
70E1 2801
T0E3 77
TJ0E4 79
70E5 FE20

02660
02670
02680
02690
02700
02710
02720

02730
02740
02750
02760
02770
02780
02790
02800
02810
02820

02830
02840
42850
42860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03160
03110
03120
03130

Lowercase Driver

s Fdekdokdek
¥ Patch the keyboard DCB with the address
3% of the new keyboard driver
;TR IEERR
RELI0O 1D HL ,KPATCH ;Address of keyboard driver
LD (KBDADR) , HL ;SAVE NEW KBRD DRIVER
JP 06CCH ;Done. GOTO BASIC
jFEnERkRd
3 ¥ Lovercase driver
s wddkkdokk
START EQU 5 ;Start address
SAVBC DEFW 0 ;"BC” save area
SAVDE DEFW 38014 ;"DE” save area
CNIR EQU 40188 ;Counter address
PER1 EQU 500H ;Repeat counter
; # loops before lst repeat
PERZ EQU 50H ;Inter—character repeat
;s count
§RERREERK
3¥ Repeat counters may be adjusted up or dowm to
e suit the taste of the user. If repeat is too
3 ¥ fast, increase value. If repeat is too slow,
i decrease value.
jFEkrkAEk
SHIFT EQU 38804 ;Shift key location
CONTRL EQU 3801H ;Control key= @
VPATCH JR NOLP ;Printer switch @ Vpatch+l
PUSH BC ;Output to printer too
PUSH AF
LD A,C ;Get char to output
CP 208 ;Check for comtrol codes
JR NC,LPIT ;If not carry, output char
CP 7
JR C,NOVALD s1f <7, not wvalid
CP OEH
JR NC,NOVALD ;If >13, not valid
LPIT CALL 3BH ;0utput to LP
NOVALD PO?P AT
POP BC
NOLP LD L,(IX+3) ;Video patch for LC letters
LD H,{IX+4) ;Get cursor locatiom
JP C,49AH ;Jp if control code
1D A, (1X+5) ;Get cursor character
OR A
JR 2,543 ;Skip next if no char
LD (ML) ,A ;Restore char at cursor
LD A,C ;Restore character
cP 20H 1JP if control code
; to ROM driver

Lowercase Driver

70E7
70EA
70EC
70EF

70F2
70F5
70r8
70FA

70FB
70FC
70FD
70FE
70FF
7101
7102

7103
7105
7108
7108
710F
7113
7114
73115
7117
7114
711D
7i1E
711F
7120
7121
7122
7124
7125
7128
7129
712A
7128
712E
7131
7133
7136
7139
713A
713E

DAD605
FE&0

D2A604
C37D04

213640
110138
0EQGO
1A

47
AE
70
A0
2032
0c
2¢

CBO3
FIFATO
241840
ED4BBATO
ED3BBG70
1A

AD

2007
210005
221840
c9

28

08

7C

B5

2806

08
221840
AF

c9

08
215600
221840
1806
210005
221840
47
ED43BAT0
ED53BC70

(3140
03150
03160
03170

03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320

03330
03340
03350
03360
03370
03380
03350
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
43530
03540
63550
03560
03570
03580
03590
03600
03610

JP ¢,506H
cP 80H
JP NC,4A6H
JP 47DH
;****M*
3 ¥ Keyboard driver
;********
KPATCH 1D HL,4036H
1D DE,3801H
b c,0
KLOOP 1D 4,(DE)
LD B,A
XOR (uL)
1D (HL) ,B
AND B
JR NZ ,KPRSD
INC e
INC L
RLC E
RELL JP P,KLOOP
LD HL, (CNTR)
REL2 1D BC, (SAVEC)
REL3 1D DE, (SAVDE)
1D A,{DE)
AND B
JR NZ ,CHRCNT
1D HL,PER1
D (CNTR) ,HL
RET
CHKCNT DEC HL
EX AF ,AF~
LD AH
OR L
JR Z ,RPT
EX. AF ,AF”
LD (CNTR) ,HL
X0R A
RET
RPT EX AF ,AF”
LD HL,PER2
LD {CNTR) ,HL
JR KPRSD1
KPRSD LD HL,PER1
LD {CNTR) ,HL
KPRSDL 1D B,A
REL4 LD (SAVEBC) ,BC
REL5 1D (SAVDE) ,DE

B-6

;Jump to 04A6 if >80
;Entry to printing chars

;KB Save area

;KB Scan area

;Init key counter

;S5can keyboard search for
3 new characters

;Save scan value

;Check for previous
;Store new scan

;JP IF NEW KEY

sNext count

;Next location decode
; matrix

;Next addr in KEYMEM
;Loop if not 8 done
;Test repeat

;Get old BC

;Get old DE

;Get key scan

;8ee if still pressed

;No key. RESET count
;Reset counter

;Check counter

;If =0, repeat key

;:8ave counter
;Value ret=0

;Set PERZ count
;Key repeat
;Restore repeat to FERI

;Save “BC” for repeat
;Save “DE” for repeat

7142
7144
7146
7148
7149
7144
714C
714D
7150
7151
7154
7155
7156
7158
7154
715C
715E
7160
7162
1164
7165
7167
7169
7168

716D
716F
1171
7173
7175
7177
1179
7178
717D
717F
7181
7183
7185
7187
7189
7188
718¢C
718F

CBO1
CBOL
CBO1
0c
OF
30FC
aD
3A8038
47
3A0138
5F
79
€640
FE6D
3011
CBOB
3004
D640
1845
4¥
CBO8
3840
EE20
183C

D670
3020
€640
FE3C
3802
EE10
CBO8
3004
EE1Q
1828
CBOB
3024
FE3A
3020
D6 ZF
c8
210672
1813

03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
43790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03570
03980
03950
04000
04010
04020
04030
04040
04050
04060
04070
04080
046090

B-7

Lowercase Driver

JREEEL KA
3% Decode matrix value
s Fdddokok
RLC C ;%2
RLC c 3 ¥4
RLC c ;%8
KINC INC G
RRCA
JR NC,KINC
DEC c ;Adjust for over-—add
LD A, (SHIFT) ;See if <SHIFT>
Lp B,A ;8tore for later
D A, (CONTRL) ;See if control
LD E,A ;Store for later
LD A,C ;Restore and adjust value
ADD A,40H
cp 60H
IR NC,NOALPH 3JP if nop-alpha
RRC E
UCLS JR NC, NOCTRL ;Uppercase lock here
SUB 40H ;Convert uppercase
JR FINIS ;Done
NOCTIRL 1D C,A
RRC B ;Test for shift
JR ¢,FINIS ;3 JP if shift
X0R 20H ;Case switch
JR FINIS
s FkE Rk ek
3¥ Adjust control codes and test for LOCKUP
s Fekdkek ok
NOALPH SUB 70H ;Non-alpha
JR NC,LOOKUP
ADD A,40H
CP 3CH
JR C,NOCHG
Z0R 10H
NOCHG RRC B
JR NC, CKCTRL
XOR 10H
JR FINIS
CKCTRL RRC E ;Check for comtrol (@)
JR NC,FINIS ;Done if no control
c 3AH
JR NC,FINIS
SUB ZFH
RET Z
REL6 1D HL,TABLE2-1
JR NOSHFT+3

Lowercase Driver

7191
7192
7193
1194
7196
7198-
7199
7198
719D
719F
71A0
71A1
7144
71A5
71A7
71A38
71A9
71AA
71AD
71AE
T1AF
7180
7182
7186
7184
7188
71BC
71BE
71BF
71¢0
71C1
71C2
71C5
71C6
71C7

71C8
71C9
71CB
71¢C
71CE
T1CF

57

07

82
CBOS8
3003
3C
1806
CBOB
3602
3¢

3C
21EF71
5F
1600
19

7E

F5
013303
0B

78

Bl
20FB
ED4BBA70
EDSBBCG70
14

AQ
2003
Fl

AF

c9

Fl
¢bll72
4F

B7

FO

OF
3812
OF
3818
OF
300A

04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510
04520
04530
04540
04550
04560
04570
04580

jFEE R
3% Lookup key scan in table.
s dkdk kR
LOOKUP LD D,A ;TABLE LOOKUP ROUTINE
RLCA
ADD A,D
RRC B
JR NC,CTIRL1
IRC A ;Shift character
JR NOSHFT
CTRLI RRC B
JR NC,NOSHFT
ING A ;Control character
INC A
NOSHFT LD Hi,, TABLE ;Begin of table
LD E,A
LD D,0
ADD HL,DE :Add offeet in “A”
1D A, (HL) ;Get value
FINIS PUSH AF ;ALMOST FINISHED
LD BC,0333H ;Debounce count
DBRCE DEC 8C
1D A,B
OR C
JR NZ ,DBNCE
REL7 LD BC, (SAVBC)
RELS LD DE, (SAVDE)
1D A, (DE) ;Key still pressed?
AND B
JR NZ ,NOBNCE ;JP if YES
POP AF ;Key bounced
X0R ;No character
RET
NOBNCE POP AF 1Good key
RELY CALL JKL ;SCREEN PRINT?
ib C,A
OR A
RET P ;RETURN IF NO SPECIAL CEAR.
;**#*****
3 ¥ Special characters have bit 7 set., The special
g command number is determined by what OTHER bit
e is also set by rotating right until a carry.
s Fkkexkokkk
RRCA
JR C,UCLOCK ;81H Is uppercase lock
RRCA :
JR C,LPT00 ;82H is lineprinter switch
RRCA
JR NC,NEET ;JR if not B84H, REBOQT

11b1
7104
71D6
71D8

71DB
71DC

710D
71E0
71ElL
71E3
TLEL
71E5

71E6
71E9
71EA
71EC
71ED
711EE

71EF
71F0
11F1
71F2
71¥3
11F4
71F5
71F6
71F7
71F8
71F9
71FA

344038
E604
20F9
C30000

AF
c9

215F71
18
EED6
77

AF

c9

21BF70
1E
EEL4
17

AF

c9

oD
0D
0D
1F
SF
82
01
81

5B
1B
5E

04590
04600
04610
04620
04630
04640
046 50
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04730
04800
04810
04820
04830
04840
04850
04860
04870
04880
04890
04900

04910 ;
04920 ;

04930
04940
04950
04960
04970
04980
04990
05000
05010
05020
05030
05040
050650
05060

Lowercase Driver

WALTBR 1D A,(38401) sWait for <BREAK> released
AND 4
JR NZ ,WAITBR sLoop if <BREAK> down
JP 000cH ;84H BOOT.
; FRkdkk
3* Note: Could define keys 88H,90H,0AQH,0C0H as
3F other special keys by performing a RRCA and
3¥ jumping on CARRY to the processing routine
; FEE IOk EE
NEXT X0R A ;Key undefined
RET
I REIEK
3 Uppercase lock/unlock toggle
j Fkkdkkk
UCLOCK 1P HL,UCLS+] ;JR offset location
LD A, (BL)
X0R 6
LD (HL) ,A
X0R A ;Return no value
RET
;*f“******
3% Line primnter toggle
JEEERE AR
LPTOO LD HL,VPATCH+1 ;Video patch JR offset
LD A, (HL)
XOR 144
1D (H1.) ,A ;X0R with offset
Z0R A :Return no value
RET
EEERTRER
e Keyboard Lookup Table
Hd Format=
3k Key unshifted
3% Key Shifted
3% Key w/ CONTROL
s EEAkRFkR
TABLE DEFB 0pH ;ENTER
DEFB 0DH
DEFB ODH
DEFB IFH sCLEAR
DEFB 5FH H (UNDERLINE)
DEFB 821 ; (LPTOOD)
DEFB 01H : BREAK
DEFB 81H ; (UCLOCK)
DEFB B4H ;BOOT!
DEFB 5BH ;UP ARR.(L BRACK)
DEFB 27 ;ESC
DEFB 5EH ; (Circum)

Lowercase Driver

71FB
71FC
71FD
71FE
71FF
7200
7201
7202
7203
7204
7205
7206

7207
7208
7209
720A
7208
7120C
720D
720E
720F
7210

7211
7212
7213
7216
7218
7219
721A
721B
721C
721D
7220
7221

0A
1A
00
08
18
7B
09
5D
7D
20
20
20

40
1c
1D
1E
IF
5C
7C
1F
7E
60

E5

67
340238
FEIC
7C

El

co

E5

D5
21003C
D
E63F

05070
05080
05090
05100
05110
05120
05130
05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260
05270
05280
05290
65300
05310
05320
05330
05340
05350
05351
05360
05380
05390
05400
05410
05420
05430
05440
05450
05460
05470
05480
05490

;D. ARR.(CNTRL)

H (LF)

;L. ARR (BSP)

: (CANCEL)
; {L CURLY)
sR. ARR (TAB)

; (R BRACK)
; (R CURLY)
s SPACE

r control 0-9

;s CTLO-AT
;CTL1~FS

2-GS

3-RS

408

5-BACK SLASH
6—0R

7-DEL
8~TILDE
9-PAUSE

e UE AR M WaE wa ae s

K,& L keys at the same time will
gend what is on the screen to the
printer.

Break, Clear, and Enter will abort output

DEFB 0AR
DEFB 14AH
DEFB 0
DEFB 8H
DEFB 18H
DEFB 7BH
DEFB 9
DEFB 5DH
DEFB 7DH
DEF3 20H
DEFB 20H
DEFB Z0H

JREEKEEEK

Hed Special table fo

§ Fkdokddkok

TABLEZ DEFB 40H
DEFB 1CH
DEFR 1D
DEFB 1ER
DEFB 1Fd
DEFB 5CH
DEFB 7CH
DEFB 7FH
DEFB 7EH
DEFB 60H

s FdERRAR,

¥ JRL: Presing J,

;*

;‘k

;*

3 ki

JKL PUSH HL
LD H,A
LD A,(3802¢
CP ICH
LD ALH
POP HL
RET NZ
PUSKE HL
PUSH DE
LD HL,3CO0H

JKLOOP LD A,L
AND 3FR

B-10

;8ave “HL”
)
;JEL?

;Return if no JKL

;First screen location

7223 3EQ0D
7225 CC3BOO
7228 7E
7229 23
722A FEBO
722C 3802
722E 3E2E
7230 F5
7231 3A4038
7234 E607
7236 2006
7238 Fl
7239 Cp3B00
723C 18E2
723E 344038
7241 E607
7243 20F9
7245 3EQD
7247 CD3B00
7244 Fl
7248 Dl
724C El
724D AF
T24E C9
724F

7000

05500
05510
05520
05540
05560
05570
05580
05590
05600
(5610
05620
05630
05640
05650
05660
05670
(5680
05690
05700
05710
05720
05730
05740
05750
05760
05770

00000 Total errors

JKLCR

JELOUT

JKLSTP

JKLST

ZEND

LD
CALL

INC
P
JR
LD
PUSH
1D
AND
JR
POP
CALL
JR
1D
AND
JR
1D
CALL
POP
POP
POP
XOR
RET
EQU

A,0DH
Z,3BH

A, {HL)
HL

800
C,JRLOUT
A,7.7

AF

A, (3840H)
Z

NZ , JKLSTP
AF

3BHE
JKLOOP

A, (3840H)
7

NZ , JKLSTP
A,0DH
3BH

AF

DE

HL

A

$
PLC

B~11

Lowercase Driver

;If EOL, output CR
;Get screen value

s

;Replace graphics with 7.

;Stop if ENT/CLR/BRK
;0utput character

;Loop til done

sWait til abort released
;5end CR

;JKL done
;End of program

Lowercase Driver

CHKCNT
CONTRL
DBNCE
FINIS
JKLOOP
JELSTP
KLOOP
KPRSD1
LOOKUP
NEXT
NOCHG
NOSHFT
PER2Z
RELL
REL3
REL6
REL9
RPT
SAVDE
TABLE
UCLS
ZEND

711E
3801
71AD
71A9
7220
723E
70FA
7139
7191
71DB
7179
71A1
0050
7105
710F
718C
71¢2
712A
70BC
71EF
715E
124F

CRCTRL
CRTADR
DIFF
JKL
JELOUT
KBDADR
KPATCH
LCMOD
LPIT
NOALPH
NOCTRL
NOVALD
PLC
REL1O
REL4
REL7
RELOC
RTABLE
SHIFT
TABLEZ2
VPATCH

7181
401E
7028
7211
7230
4016
70F2
702C
70CF
716D
7164
70D2
7000
7081
713A
7182
7041
7069
3880
7267
70BE

B~12

CNTR
CIRLL
DRELOC
JKLER
JELST
KINC
KPRSD
LOAD
LPTOO
NOBNCE
NOLP
PERL
RELQ
RELZ
RELS
RELS
RELOCT
SAVEBC
START
UCLOCK
WAITBR

4018
7198
7087
7223
7248
7148
7133
7024
71E6
71C1
70D4
0500
70AB
7108
713E
7186
7045
70BA
70BA
710D
71p1

41E2
41E2

021E
01F8
O1FF
0324
1BB3
06CC
1997
022¢
1E54
40DF
4288
20FE

40DF
40DF
3icoo
3C00

31453

Cco6

24
2A

24

EREEE
EERER

Appendix C: Alternate System

01000 ;**

01010
01020
01030
01040
01050
01660
01070
01080
01080
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01250
01300
01310
01320
2A

EEREE

24
2A
24

;'k

;

;:-’r

;'k

;*

;*

;"k
ORG
JP

;********

;1&

;********

CLRCFF EQU

CTOFF EQU

CTON EQU

DSPCHR EQU

QINPUT EQU

BASIC EQU

SNERR EQU

CSTAR EQU

CONVRT EQU

TRXADR EQU

STACK EQU

OUTCR EQU

;********

- SYSTEM

;%*%*****
ORG
DEFW
ORG
DEFM

24 2A 2A

2A 24 2A

28 2A 2A

ZA 2A 24

Alterpnate SYSTEM Loader
By Insiders Software
PO Box 2441, Dept. SYS

Springfield, Virginia 22152
B R L et EL T P P e)

Consultants, Inc,.

£ % W % % %

41EZH ;SYSTEM Hook
START ;Patch to execute
; new loader.

ROM routines that we will use

021EH ;CLR Cassette Flip Flop
QlF8H ;Cassette off

01FEH ;Cassette on

032AH ;Display character

1BB3H ;Print 7 in input

06 CCH ;BASIC entry point

1997H ;Syntax Error

022CH ;Change star in corner
1E5AH 3;DEC ASCII to BINARY
40DFH ;Transfer Address location
4288H ;Stack pointer set

20FER ;0utput a CR to device
TRAADR

06CCH 1Default transfer to BASIC
3C00H

CERERRE TR AN AR R ERNF R TR RTERLRFRERERRTRRT

SYSTEM Loader

3C40
3640

3C80
3C80

3¢C0
3¢co

5200
5200
5203
5206
5209
520€C
520F
5212
5215
5218
321B
52iC
521F
5221
5224
5225
5228
5228
522¢C
522F
5232
5234
5236
5238
5238
523E
523F
5240

5243

20 20 20
74 65 72
53 59 53
6F 61 64
20 20 2A

BEEER

CD7552
22DF40
CDF801
318842
CDFE20
219532
CD8C52
CDB31B
DACCO6
D7
CA%719
FE2F
CATES2
E5
214652
CD8C52
El
CD2053
Cb3653
FE53
20F9
0606
CD3653
242040
77

23
222040

1083

01330
01340
20 20
6E 61
54 45
65 72

01330
01360
6E 73
53 6F
20 43
61 6E

01370
01380
2A ZA
A 24
2A 2A
28 2A

01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01521
01522
01523
01524
01550
01560
01570
01580
01590
01640
01641
01642
01643
01644

01660

20
74
4D
20

EERE
ERER

41
65
20
20

ORG

SYSENT CALL

1b
CALL

SYSTEM 1D

GETTL

GETTLL

CALL
LD

CALL
CALL

RST
JP
cP
JP
PUSH
D
CALL
POP
CALL
CALL
cP
JR
b
CALL
LD

INC
b

DJINZ

3C40R
Tk Alternate SYSTEM Loader *7

3C80H
“* Insiders Software Consultants *7

3CCOH
W e e e L e T e

5200H

GETADR iGet address from tape
(TRAADR) ,HL ;Load into transfer addr
CTOFYF ;Cassette off

5P,STACK ;S5et stack pointer
QUTCR ;0utput a CR

HL,5YSCHD ;Command msg

OUTLIN ;O0utput mag

QINPUT ;Get input from user
C,BASIC 3sBASIC if <BREAR>

16 ;Test buffer

Z ,SNERR sIf nothing, syntax err
e ;Goto address

Z,5Y5G0

HIL

HL,TITLE

QUTLIN

H.

CTONRL ;Cassette on/read leader
CRBYTE

55H ;Search for title byte
NZ ,GETTL ;Loop for title

B,6 ;Max num chars in title
CRBYTE ;Get title byte
HL,{4020H) ;CURSOR POSITION
(HL) ,A

HL

(4020H) ,HL

GETTL1

c-2

5245 CD2C02
5248 CD3653
5248 FE78
524D CA0052
3250 FE3C
5252 20F4
5254 Ch3653
5257 &7
5258 Cb7552
525B 85
525C 4F
525D CD3653
5260 77
5261 23
5262 81
5263 4F
5264 10F7
5266 CD3653
5269 B9
5326A 28D9
526C 21BAS52
526F CD8C52
5272 C30952
5275 CD3653
5278 6F
5279 CD3633
527C 67
527D C9
527E EB
527F 2ADF40
5282 EB
5283 D7
5284 C45A1E
5287 €20952
528A EB
528B E9
528C 7E
528D BY
528E C8
528F CD2A03
5292 23
5293 18F7
5295 0A0A
5297 53

59 53 54
6D 6D 61

5245 00

01670
01680
01690
01760
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810

01820

01830
01840
01850
01860
01870
01880
01850
01900
01210
01920
01930
01940
01950
01960
01970
02000
02010
02020
02030
02040
02060
02070
(2080
02090
02100
02110
02120
02130
45 4D
6E 64
02149

GETREC CALL
GETIBLK CALL
CP
RE
cP
JR
CALL
LD
CALL
ADD
LD
CALL
LD
IKC
ADD
LD
DJNZ
CALL
cp
JR
LD
CALL
JP
CALL
LD
CALL
LD
RET
5YS60 EX
LD
EX
RST
CALL
JP
EX
JP
OUTLIN LD
OR
RET
CALL
INC
JR
DEFW
DEFM
20 43 6F

BLKRD

GETADR

5YSCMD

DEFB

CSTAR
CRBYTE
780
Z,SYSENT
3CH

NZ ,GETBLK
CRBYTE
B,A
GETADR
AL

C,A
CRBYTE
{HL),A
HL

A,C

C,A
BLKRD
CRBYTE

c

Z ,GETREC
HL,CKSUM
OUTLIN
SYSTEM
CRBYTE
L,A
CRBYTE
H,A

DE,HL

H1,, (TRAADR)
DE,HL

16

NZ ,CORVRT
N7 ,SYSTEM
DE,HL

(HL)

A, {(HL)

A

Z
DSPCHR
HL
OQUTLIN
0AOAH

“SYSTEM Cowmmand”

c-3

SYSTEM lLoader

;Change star
;Get byte
;Byte preceeding trams. adr

;Byte preceeding load adr
;Loop til block marker
;Get number of bytes
;Store number

;Get load address

jAdd load addr to cksum
;Save cksum in “C”

;Get data byte

iStore in mem

3Inc load address

;Add previous cksum
1Save new cksum

;Loop thru data

;Get cksum

;Cksum match?

;Cksum error

;Get address from tape
;8ave LSB
;Get M5B

;System execute to addr
;Get transfer address
;Put in DE

;Convert to val in DE
38witch addr to HL
;Goto routinel

;0utput a line to video
;End?

;liinefeeds

SYSTEM Loader

5246
5248

52B9
52BA
52BB

52CA
52CC
52CE
52D0
52p2

52KE9
52EA

5312
5314
3317
5314
531D
5320
5323
3324
5325
5328
532A
532C
532E
5331
5334
5335
3336
5337
2338
5334
333D
533F
5340
5341

0AQA
50

72 6F 67
6F 61 64

00
0D
43

68 65 63

65 72
0D0o
0AOA
0ADA
0AQA
41

6C 74
20 53
4C 6F
oD

20

20 62
64 65
74 77
6E 73
73 2¢C
0D00
£DC901
21CC52
CDBC52
€30952
CDFEO1
ES

AF
CD4253
FEAS
20F9
JE2A
323E3¢C
323F3C
El

c9

g5

E5
0608
CD4253
10FB
El

cl

c9

12

65
59
61

79
72
61
75
20

02150
02160
72 61
69 6E
02170
02180
02190
6B 73
6F 72
02200
02210
02220
02230
02240
72 6E
33 54
64 65
02250
02260
20 49
73 20
72 65
6C 74
49 6E
02270
02280
02290
02300
02310
062320
02330
02340
02350
02360
02370
02380
62390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500

TITLE DEFW
DEFM

6D 20 6C

67 3A 20
DEFB

CKSUM DEFB
DEFM

75 6D 20

21
DEFW

STRTM DEFW
DEFW
DEFW
DEFM

61 74 65

45 4D 20

72
DEFB
DEFM

6E 73 69

53 6F 66

20 43 6F

61 6E 74

63 2E
DEFW

START CALL
1D
CALL
JP

CTONRL. CALL
PUSH
X0R

CRLDR CALL
CP
JR
Lb
LD
b
PoP
RET

CRBYTE PUSH
PUSH
LD

CRBYTL CALL
DJNZ
POP
POP
RET

0AQAH
“Program loading:

0
0DH
“Checksum error!”

ODH

0A0AH

0AQAH

0ACAH

“Alternate SYSTEM Loader”

0DH

L

by Insiders Software Consultants, Inc.”

ODH

01C9H ;Clear screen

HL,STRTIM

QUTLIN ;Welcome message
SYSTEM

CTON ;Cassette on/read leader
HL

A

CRBIT ;Read bit

0ASH ;Syne. byte

NZ , CRLDR

A, TR s;Stars in corner
(3C3EH) ,A ;Put first star

(3C3FH) ,A ;Put second star

HL ;Restore HI

BC ;Read byte from cassette
HL

3,8

CRBIT ;Read bit from cassette
CRBYTL ;8 bits=byte

HL

BC

G4

5342
5343
5344
53346
5347
5349
534B
534D
5350
5352
5354
5356
5358
5354
5358
535C
535E
535F
5360
5363
5364
5365
3314

G5
F5
DEFF
17
30FB
0641
10FE
CD1EO2
06 50
10FE
0614
DBFF
10FC
&7
F1
CB10
17
F5
Cb1EO2
Fl
Cl
c9

02510
02520
02530
02540
62550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730

CRBIT

SRTIMB

RBITR

PUSH
PUSH
IN

JR
LD
DJINZ
CALL
LD
DJIRZ
LD
IN
DJINZ
b
PoP

RLA
PUSH
CALL
PoP
POP
RET
END

BC
AF
A, (OFFH)

NC, SRTIMB
B,41H

§
CLRCFF
B, 50H

5

B,14H
A,{OFFH)
RBITR
B,A

AF

B

AF
CLRCFF
AF
BC

START

C-5

s;Read a bit

SYSTEM Loader

;Search for timing bit

3If no bit, try again
;First timing loop

;Delay

;Clear cassette Flip-~flop

;Second delay

;Delay

;Redundant bit read

;Get bit
;Loop

;Restore “A7

;Rotate high into carry
;Get bit to low order

;Clear CFF

SYSTEM Loader

00000 Total errors

BASIC
LRCFF
CRBYTE
CSTAR
CTONRL
GETELK
GETTLI
QINPUT
SRTIMB
STRTM
SYSGO
TRAADR

06CC
0Z1E
5336
022¢
5320
5248
5238
1BB3
5344
52¢C
527E
40DF

BLERD
CONVRT
CRBYTIL
CTOFF
DSPCHR
GETREC
QUTCR
RBITR
STACK
SYSCMD
SYSTEM

525D
1E5A
533a
01F8
0324
5245
20FE
5356
4288
5295
5209

CKSTM
CRBIT
CRLDR
CTON
GETADR
GETTL
OUTLIN
SNERR
START
SYSENT
TITLE

52BA
5342
5325
01FE
5275
322F
528C
1997
5314
5200
5246

Appendix D: ASCII Table

Character Hex Decimal ASCII Use TRS-80 Use

* % % * ¥ Communications Control Characters % % % % %

NUL QoH Y NULL NUTE:
SOH 01H 01 Start of Heading Break
STX 02H 02 Start of Text None
ETX 03H 03 End of Text None
EOT 04H 04 End of Transmission Noe
ENQ 05H 05 Enquiry None
ACK 06H 06 Acknowledge None
BEL 07H 07 Bell or Alarm None
BS 08H 08 Backspace Backspace & erase
previous character
HT 09H 09 Horigzontal Tab Horizontal Tab
iF OAH 10 Linefeed Translated to
Carriage~return
VT OBH 11 Vertical Tab Translated to
Carriage—-return
FF 0CH 12 Form feed (Top Translated to
of Page) Carriage-return
CR {DH 13 Carriage-return Carriage-return
g0 0EH 14 Shift Qut of Turn on Cursor
Standard Character
Set
S1 OFH 15 Shift Into Standard Turn off Cursor
Character Set
DLE 10H 16 Data Link Escape None
pCl 11H 17 Device Control 1 None
{Transmit Cn)
oC2 128 18 Device Control 2 None
(Paper Tape On)
pC3 138 19 Device Control 3 None
{Transmit Off)
DC4 14H 20 Device Control 4 None
{Paper Tape Off)
NAK 1584 21 Negative Acknowledge None
SYN 16H 22 Synchronous Idle None
EIB 174 23 End of Transmission Convert to 32-Character
Mode
CAN 188 24 Cancel Brase Input Buffer
m 19H 25 End of Medium Advance Cursor

b1

The ASCII Table

Character
ESC

G5

RS
us

* %k % % %

Character
Space
§

a0

I = + %~ om = R S

WV AN e WD IO U s L N RO N

Hex

1aH
IBH
1cH

ipH

1EH
1FH

Special Characters

Hex
20H
21H
22H
23H
24H
25H
26H
278
28H
29R
2AH
2BH
2CH
Z2DH
2EH
2FH
30H
314
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FE

Decimal
26
27
28
29

30
31

ASCII Use TR5-80 Use

Substitute Linefeed

Escape (Alt Mode) Upward Linefeed

File Separator Return Cursor to Upper
Left Corner of Screen

Group Separator Move Cursor to Start of
Line

Record Separator Frase to End of Line

Unit Separator Erase to End of Screen

and Numbers * * * % %

Character Name
Space
Exclamation Point
Quotation Mark
Number (Pound) Sign
Dollar Sian
Percent
Ampersand
Apostrophe

Open Parenthesis
Close Parenthesis
Asterisk

Pilus Sign

Comma

Hyphen (Minus)
Period

Slash

Zero

Cne

Two

Three

Four

Five

Six

Seven

Eight

Nine

Colon

Semicolon
Less~than Sign
Bgqual Sign
Greater-than Sign
Question Mark

D-2

Character Hex Decimal Character

Upper-Case Alphabet

40
41H
421
43H
44H
45H
46H
47H
48H
45H
4AR
4BH
4CH
4DH
4EH
4FH
50
51H
528
53H
54H
55H
561
57H
58H
59H
5pH
5BH
5CH
5DR
5EH
5FH

e N KKESOH DO OREORUHIOTIAUOD Mo

i

k k kK %k *

64 Accent Grave

~d
[o4)
i mm e R WS G Dt MO O D B AW EDTO D QTN

95 Delete

TR5-80 Graphic Characters

The ASCII Table

Hex Decimal

60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
T1H
72H
73H
74H
75H
76H
TIH
78H
79H
7AH
7BH
7CH
7DH
TEH
7FH

Iower-Case Alphabet

96

97

98

99
100
101
102
103
104
105
106
107
138
169
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

% ¥ ¥ %

TRS-80 Graphic Characters are represented by the hexadecimal characters
81H through OBFH (decimal 129 through 191) and are shown in Appendix E.

D-3

The ASCII Table

* * % * ¥ TRS-80 Space Compression Codes # * % % %

Space compression codes are single bytes that take the place of a number
of spaces. In other words, when the TRS-80 encounters these characters in an
input stream, it will substitute a number of spaces for that character.

Here is an example:

(in Basic) "A"™CHRS (202)+7B"
{in Hex) 41Cha42

will expand to:

(in print) " B"

(in Hex) 412020202020202020202042
Hex Decimal Represents
C2H 1094 2 Spaces
C3H 195 3 Spaces
CAH 196 4 Spaces
C5H 197 5 Spaces
C6H 198 6 Spaces
C7H 199 7 Spaces
C8H 200 8 Spaces
CSH 201 9 Spaces
CAH 202 10 Spaces
CBH 203 11 Spaces
CCH 204 12 Spaces
CDH 205 13 Spaces
CEH 206 14 spaces
CFH 207 15 Spaces
DOH 208 16 Spaces
D1H 209 17 Spaces
D2H 210 18 Spaces
D3H 211 19 Spaces
D4H 212 20 Spaces
D5H 213 21 Spaces
D6H 214 22 Spaces
DH 215 23 Spaces
DgH 216 24 Spaces
DSH 217 25 Spaces
DA 218 26 Spaces
DBH 219 27 Spaces

D-4

The ASCII Table

Hex Decimal Represents
DCH 220 28 Spaces
DDH 221 29 Spaces
DEH 222 30 Spaces
DFH 223 31 Spaces
EOH 224 32 Spaces
ElH 225 33 Spaces
E2H 226 34 Spaces
E3H 227 35 Spaces
E4H 228 36 Spaces
ES5H 229 37 Spaces
E6H 230 38 Spaces
E7H 231 39 Spaces
E8H 232 40 Spaces
E9H 233 41 Spaces
EBH 234 42 Spaces
EBH 235 43 Spaces
ECH 236 44 Spaces
EDH 237 45 Spaces
EEH 238 46 Spaces
EFH 239 47 Spaces
FOH 240 48 Spaces
F1H 241 49 Spaces
F2H 242 50 Spaces
F3H 243 51 Spaces
F4H 244 52 Spaces
F5H 245 53 Spaces
F6H 246 54 Spaces
F7H 247 55 Spaces
F8H 248 56 Spaces
F9H 249 57 Spaces
FAH 250 58 Spaces
FBH 251 59 Spaces
FCH 252 60 Spaces
FDH 253 61 Spaces
FEH 254 62 Spaces
FFH 255 63 Spaces

D5

Appendix E: Graphies Table

This appendix was designed to provide a ready visual
reference showing each of the TRS-80 Graphic <c¢haracters.
In most tables covering this subject, the light and dark
areas have been reversed. We have found this confusing and
therefore have shown the pixels (picture elements) in their
true representations. For instance, if you want nothing to
show, you would want to send a 80H (128 decimal) character
to the screen. A completely white block can be placed on

the sSCreen with a OBFH (191 decimal) character.

ROH

AOH

ASH

BiH

AlH
161

&3H
i

3AH #BH
139

93H

AAH ABH .

87H

1E4A

7F50

7F50
71F52

7F53
1F55
7E56
TF58
7F59
7F5A
7¥5B
7F5D
7760
7F61
7JF62
TF64

3800
01

3E80
0l
3E0L
D5

F5

7A
FE80
D24ALE
F5

7B
FE30
DZ4ALE

Appendix F: Set/ Reset

01000 H Fhdhdkddkhb ki v dbhddddiohiddkihdd

01010

01020 ;

01030
01040
01650

01060 ;

01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01350

L

;Illegal function call

Upon entry by CALL to POINT, SET or RESET (P/S/R)

“E“=Y coordinate.

The POINT routine returns -1 (FFH) if the point

The return is in “A” AND in the INT FPAl (see

;Entry for POINT
;Bide the next instr,
3 w/ LD BC

;Entry for SET

;Hide next instr,
;Entry for RESET
;S5ave coords

;Save command P/S/R
3LD X Coordinate

;X < 128

3If not, illegal func.
sPush X coord.

;Get Y Coord

1Y<48

¥ SET RESET POINT
%
>
3% Simple Graphics Routines
Hha by Imnsiders Software
3® Consultants
3% PO Box 2441, Dept. SRP
1y Springfield, VA 22152
R L L T Tt
FCERR EQU 1E4AH
§ FER Rk
;‘k
1% ‘D°=X coordinate,
3 ¥ 0<=X<128, 0<=Y<48
§ FHFI AR
ORG 7F50H
JEEIRI*ER
;*
3 ¥ is SET, else the value = Q0H.
jgn
3
;¥ volume I)
§ Fckkddokk
POINT LD A,0
DEFB 01
SET b A,80H
DEFB 01
RESET LD A,0lH
PUSH DE
PUSH AF
1b A,D
P 80H
Jp NC,FCERR
PUSH AF
LD ALE
Ccp 308
Jp NG,FCERR

31f not <48, illegal func.

SET/RESET/POINT

7F67
7F69
TFGA
7F6C

TJF6E

7F70
7¥71
1F72
7F73

7F74
7876
TETT
iF78
7F79
7F7A
TJE7B
T7E7C

JF7E
IF7F
7¥80
7F81
7F82
7F83
7E84
7F85
JF87
7788
7789
7F8B

16FF
14

D603
30¥B

€603

4F
Fl
87
5F

0602
T4
1F
57
78
1F
5F
10F8

79
8F
3C
47
AF
37
8F
10FD
4F
T4
F63C
57

01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840

The next section divides the Y coord. by 3 to get
the row (D"} and the remainder (°C”)

D,~1
D 3INC DIV count
3 ;Divide by subtractiom
NC,PSRO0 ;1f not neg result,

; subtract again
A,3 ;:Restore to positive

; {(Get remainder)
C,A ;Store remainder in “C”
AF ;G6et X coord.
ALA sMultiply by two (2)
E,A ;Store in “E”7

Determine the LSB of the position on the screen,
the value of which is placed in “E°

g
L3

3

3

D
A,

e

E,
P

b

01

This section uses the remainder to determine

the MSB of the Byte”s location in screen memory.
The value of the MSB is placed in "D~

The video RAM address is nmow in “DE”.

H *huhhhkk

H *

H *

H Tkkkkihk
LD

PSROD INC
SUB
JR
ADD
LD
POP
ADD
D

; kekdrkdoioky

H *

H *

3 whkkhRkkRy
LD

PSROL b
RRA
1D
1D
RRA
LD
DIRZ

H Tt

H +*

H %

3 *

H ®

3 EdhkikkEk
1D
ADC
INC
LD
X0R
SCF

PSROZ ADC
DJINZ
LD
LD
OR
LD

A,G ;Get remainder
ALA

A

B,A

A

AA

PSRO2

C,A

A,D

6 ;8creen line length
D,A

F-2

7¥8C
788D
7F8E
7791
7F93
TF9%
7F95
T7¥96
7¥97
TE99
7F9A
7F9D
TESE

TFOF
7FAQ
TFAL
TEAZ
TFA3
TFA4
TFAS
TFA6
7FA8
TFAS

7FAB
TFAC
7FAD
7¥BO
7¥Bl
7FB2
0000

14

BY
FA937F
3E80
47

Fi

BY

78
280F
12
FAASTF
79

2F

4F
1A
Al
12
Dl
c9
Bl
18FA
Al
C6FF

9F

E5
CD8DO9
7D

El
18EF

01850
(1860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
(2000
02010
02020
42030
02040
02050
02060
02070
02080
02090
02160
02110
02120
02130
02140
02150
02160
02170
02180
02190

00000 Total errors

SET/RESET/POINT

JFEEEEkTE
3¥ Get character to be manipulated
3 Fekdededdk
b A,{DE)
OR A
JP M,PSRO3 ;JP if graphics character
jAY 4A,80H ;Set b7, reset others
BSRO3 LD B,A
POP AF :Get OP type (P/S/R)
OR A
LD A,B ;Restore byte
JR 7 ,PSRO6 ;JP if POINT
LD (PE},A ;Store byte on screen
JP M,PSRO5 ;JP if SET
LD A,C ;Load bit to reset
CPL ;A11 bits 1 except
; bit to reset
LD C,A
D A,(DE) ;Get char again
AND # ;Reset pixel
PSRO4 LD {DE),A ;Put back character
PSRO4B POP DE ;Restore coords
RET ;DORE]
PSRGS OR H ;Set bit
JR PSRO4 sFinish up
PSRO6 AND C ;Check bit for On/Off
ADD A,0FFH ;If on, RET=-1,
; Else REI=0
SBC AA
PUSH HL ;Save “HL”
CALL (098DH ;Determine sign
LD A,L
POP HIL ;Restore “HL”
JR PSRO4B
END

SET/RESET/POINT

FCERR
PSRO1
PSROG
PSRO6

1E4A POINT
7F76 PSROZ
7FA2 PSRO4B
TFA8 RESET

7F50 PSROO
7F84 PSRO3
JFA3 PSROS
7F56 SET

F=4

7569
7F93
7FAS
7F53

Appendix G: Lowercase Hardware Modification

Lowercase letters are not supported in an un-modified
TRS-80. However, since its introduction, many different
modifications have been introduced. One of the most popu-
lar ones wused to be the "Electric Pencil" modification
which added lowercase letters (without descenders on the
video) and "Control" key. When Radio Shack decided to
produce word processing software, it also needed to provide
lowercase letters (who wants to write ©personal letters ONLY
IN UPPERCASE?). For a fee, Radio Shack will install
lowercase into your CPU unit which will allow vou to dis~
play lowercase with one-dot descenders on the screen.

If you have an "old" machine, you may want to spend
the money to have the Shack install the modification; this
will give you true descenders, and if your seal is still
intact, may save you money if the machine fails at a later
time. If you have one of the newer machines, REALLY know
the 1in's and out's of computer circuitry, and are not
afraid of the consequences of breaking the seal, we are
providing this quick LC modification. It should take about
15 minutes to perform.

The lowercase modification on the new machines is easy
since the new character generator chip is installed and one
of the 2102 RAM chips is in a socket. Proceed as follows:

Lowercase Mods

1 Bend up pins 11 and 12 on a new 2102.
2) Remove 746-2102 from CPU and piggyback new 2102.

3) Solder all pins together except 11 and 12 -
CAREFULLY!
Try not to get solder near the bottom pin end.

4) Solder thin wires to 11 and 12 pins that were
bent up. (3-4 inches)

5) Place the 2102s back in the socket; align the
notches.

6} Connect pin 11-246, to pin 13-Z44.
Use the small hole NE of pin 13.

7} Solder pin 12-%46, to pin 13-Z27.
You must solder to the pin itself.

8} Cut the trace between Z29 and %30. The trace is
a thin diagonal between Z29 and Z30.

Of course, to get lowercase letters you will have to
1oad a lowercase driver; the assembly language source code
for such a driver is 1listed in Appendix B. Before you open
up your unit, remember that it voids all warranties. This
modification should not be performed by persons not trained
or experienced in servicing SENSITIVE electrical equipment.
He that eagerly grabs a soldering gun, whips out the left-
over copper wire from the lamp he just put together, and
tries to perform the modification will be replacing the
$300 board in the CPU.

Appencix H: Printer Driver

01000 : FHEAFTERERRERTERAAAAX TR ZRAAEEA LSRR RARRRRESR

3
01010 ;¥ Parallel Printer Driver *
01020 ;* *
01030 ;¥ by Insiders Software *
01040 ;% Consultants, Inc. *
01050 ;* PO Box 2441, Dept. PRT *
01060 ;* Springfield, Virginia 22152 *

01070 jF¥vkiksdiividdibiiddtrbbibhbkiibhikhirs

4028 01080 LPTADR EQU 4026H ;:Line Printer DCB
4028 01090 LPTLPP EQU- 4028H ; Lines per page (+3)
4029 01100 LPTLCT EQU 4029H ; Line counter {+4)
4024 01110 LPTCPL EQU 402AH ; Characters per line (+3)
4028 01120 LPTCCT EQU 402BH ; Character counter (+6)
402¢C 01130 LPTIND EQU 402CH ; Line indent (+7)
0038 01140 LPIBYT EQU 003BH ;Print a byte
37E8 01150 LPRINT EQU 37E8H ;Line printer address
05D1 01160 PSTATU EQU 05D1H ;Line printer status ck
QL1170 ;¥ksskdiiok
F500 01180 ORG 0F 5008 s;Anywhere in highmem
F500 2133¥5 (01190 START LD HL ,PRTDVE-1 ;Set highmem pointer
F503 224940 01200 LD (4049H) ,HL ;Set HIGHS
F506 22B140 01210 LD (40B1H) ,HL ;Set BASIC highmem ptr
F509 11CEFF 01220 LD DE,-50 ;Clear string area
F50C 19 01230 ADD HL,DE
F50D 224040 01240 LD (40A0H) ,HL ;CLEAR 50
01250 ;%%wdiskn
01260 ;* Pointers have been set to protect the driver.
01270 ;% Now, set up the default values in the DCB
01280 ;¥¥kwxikn
0042 01290 LPP EQU 66 ;8tandard page length
0050 01300 CPL EQU 80 ;Characters/line
0005 01310 IND EQU 5 ;Line indent
0006 01320 SEKPTOF EQU 6 ;8kip top—of-form flag
01330 ; if NZ, skip on
01340 ; eof~skptof
F510 3E42 01350 SETDEF LD A,LPP ;Get lines/page
FS12 322840 01360 LD (LPTLPP),A ;Set lines/page
F515 3E50 01370 1D A,CPL ;Get characters/line
F517 32240 01380 LD {LPTCPL),A ;8et characters/{line
F5iA 3E05 01390 1D A,IND ;Get indent
FS1C 32240 01400 LD (LPTIND) ,A ;Set indent

Printer Driver

F51F AF 01410 XOR A ;Zero counters
F520 322940 01420 LD {LPTLCT) ,A ;Zero line counter
F523 322B40 01430 LD {LPICCT) ,A ;Zero char counter
01440 ;%¥ikikix
01450 ;* Change DCB to reflect new driver
01460 ;*awikkkk
F526 2134F5 (1470 CHGDCB 1D HIL,PRTDVR ;New Driver address
F529 222640 01480 Lb (LPTADR) ,HL ;Set new driver
F52C 3E0D 01490 LD A ,0DH s+Print a CR
F52E CD3BOO 01500 CALL LPTBYT
¥531 €32D040 01510 Jp 402DH ;Entry to DOS
01520 sIf BASIC, JP (6CCH
01530 jxskkddkdik
01540 ;* Line Printer Driver
01550 j*dhkik
F534 79 01560 PRTDVR LD A,C ;Get char to print
¥535 BY7 01570 OR A
F536 CADIOQS 01580 JE Z,PSTATU ;Return status if NULL
¥539 FEOB 01590 CP OBR ;Vert Tab?
F53B 2804 01600 JR Z,FF ;Convert VT to FF
F53D FEOC 01610 cP 0cH ;Form Feed? (FF)
F53F 201F 01620 JR NZ ,CKLF 3If not FF, ck LF
F541 AF 01630 FF YOR A ;Clear “A°
F542 DDB60O3 01640 OR {IX+3) ;5ee if lpp set
F545 €8 01650 RET A 3;1f no lpp cnt, no out
F546 AF 01660 XZ0R A ;Clear “A°
F547 DDB606 01670 OR (IX+6) ;Middle of line?
F54A 3E0D 01680 1b A,ODH
¥54C C490F5 01690 CALL Nz ,QUTPUT
F54F DD7EQ3 01700 LD A, (IX+3) ;Get lines/page
F552 DD9604 01710 SUB {(IX+4) ;SUB value in page count
F555 47 01720 ib B,A ;Save count
¥556 3E0A 01730 1D A,0AH ;0utput linefeeds
F558 CDYCF5 01740 OUTFF SALL OUTA ;0utput “A” to printer
F55B 1(QFB 01750 DINZ QUTFF ;Continue for “B” LFs
F55D C3ELF5 01760 JP ZERLCT ;Done. Zero limecount
F560 E6JF 01770 CKLF AND 7FH ;Reset b7
F562 FEQA 01780 cr DAH ;Linefeed?
F564 2007 01790 JR Nz ,CECR ;CK for CR if non-LF
F566 CD7CF5 01800 QUTLF CALL OUTA y0utput LF
F569 CDCIF5 01810 CALL INCLCT ;Inc line counter
F56C C9 01820 RET ;Done w/linefeeds
F56D FEOD 01830 CERCR < ODH | ;CR?
F56F 201F 01840 JR NZ ,QUTPUT
¥571 CD7CF5 01850 CALL OUTA
F574 DD360600 01860 LD (1X+6),0 ;Zero CCT
F578 CDC2F5 01870 CALL INCLCT ;Inc linecounter
F578B CY 01880 RET

F57¢C
F57D
F580
F582
F585
¥587
F589
F58A

F588
F58C
F58F
F590
F592
F59
F597
F598
F599
F55C
F59D
F59F
F5A2
F5A4
F3A7
F5A9
F5AC
F5AF
F5B0
F5B3
F5B6
F5B9
F5BC
F5BD
F5BF
F562
F5C5
F5C8
F5CB
F5CE
F5Db0
F5D3
F5D4
F5D6
F5D8
F5DB
FS5DD
F5E0
F5E1L
F5ES
F500

F5
Cbpl05
2809
344038
E606
28F4
F1

c9

Fl
32E837
€9
FEZ0
3004
CD7CF5
c9

4F
DD7E06
B7
2010
PR4607
3E20
CD7CE5
10FB
bD7EQ7
BD7706
79
CD7CF5
DD3406
DD7EQS
DDBEGG
co
3E0D
C36DF5
DD3404
DD7EOD3
DDBEQ4
CCELFS
D606
DDBEO&
co
0606
3E0A
CD7CF5
10FB
CDEIF5
c9
DD360400
9

01890
01500
019190
01920
01530
01940
01950
01960
01970
01980
01990
02000
062010
02020
02030
02040
02050
02060
02070
02080
02020
021060
02110
02120
02130
02140
02150
02160
02170
2180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380

OUTA
OUTAL

ABORT

NOABRT

OgTPyT

NOTCTL

QUTIND

ALRDYN

INCLCT

QUTTOF

ZERLCT

PUSH
CALL
JR
b
AND
JR
POP
RET

POP

RET
cp
JR
CALL
RET
1D
LD
OR
JR
LD
D
CALL
DINZ
LD
LD
1D
CALL
INC
1D

~
w

RET
Lp
JP
INC
b
CcP
CALL
SUB
cp
RET
LD
LD
CALL
DJINZ
CALL
RET
LD
RET

END

AF
PSTATU

Z ,NOABRT
A, (3840H)
6

Z,0UTAL
AF

AF
(LPRINT},A

20H
NC,NOTCTL
OUTA

LA
, (IX+6)

el]

NZ ,ALRDYN
B, (IX+7)
A,20H
QUTA
QUTIND
A, (IX+7)
(IX+6),4
A,C -
QUTA
(IX+6)
A, {1X+5)
(IX+6)
NZ

A,ODH
CKCR
(1X+4)
A, {(1X+3)
(IX+4)
Z,ZERLCT
SKPTOF
(1X+4)
NZ

B, SKPTOF
A,0AH
OUTA
OUTTOF
ZERLCT

(1X+4},0

START

Printer Driver

;Save char to print

;If ready, output
;Get ENTER/CLR/BRK

; CLR/BRK?

;If no pressed, loop

;Ret as if char sent
; to prevent lockup

joutput to printer

;0utput a byte
3JP if non-control

;8ave char to prinmt
;Get char count
sNon-zero?

;JP if already indent
;Get indent

;Spaces

;Output indent

;Get indent

1S9ave CCT

;Get character
;Inec CCT

;Get CPL
;Carriage return
;INC Line Counter
;Get LPP

;Skip TOF count

;Return if not at bottom

;Output to TOF

;AL tof
;Zero line counter

Printer Driver

00000 Total errors

ABORT
CKCR
F¥

LEP
LPTBYT
LPTIND
NCABRT
0UTAL
OUTLF
PRTDVR
SKPTOF

F58%
F56D
F541
0042
003B
402C
F38B
F57D
F566
F534
0006

ALRDYN
CKLF
INCLCT
LPRINT
LYICCT
LPTLCT
NOTCTL
QUIFF
OUTPUT
PSTATU
START

F5AF
F560
F5C2
37E8
4028
4029
F598
F558
F590
05D1
F500

H-4

CHGDCB
CPL
IND
LPTADR
LPTCPL
LPTLPP
OUTA
OUTIND
QUTTO¥
SETDEF
ZERLCT

F526
0050
0005
4026
4024
4028
F57¢
F5A4
F5p8
F510
F5E]

HEX

DEC

1,048,576
2,097,152
3,145,728
4,194,304
5,242,880
6,291,456
7,340,032
8,388,608
9,437,184

10,485,760

11,534,336

12,582,912

13,631,488

14,680,064

15,728,640

Appendix I: Tables

Hexadecimal Colusms

DEC

65,536
131,072
196,608
262,144
327,680
393,216
458,752
524,288
589,824
655,360
720,896
786,432
851,968
917,504

983,040

DEC

4,096

8,192
12,288
16,384
20,480
24,576
28,672
32,768
36,864
40,960
45,056
49,152
53,248
57,344

61,440

I-1

DEC

256

512

768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584

3840

DEC

16
32
48
64
80
9

112

128

144

160

176

192

208

224

240

DEC

10
11
12
13
14

15

Conversion Tables

Powers of 2

Conversion Algori

N .

Powers of 16

1

16

256

4,096

65,536
1,048,576
16,777,216

I | S N | N |

I-2

23 = 256
2 = 512
2] = 1,024
217 = 2.048
212 = 4,096
23 = 8,192
2:¢ = 16,384
21> = 32,768
2.9 = 65,536
27 = 131,072
20 = 262,144
2,0 = 524,288
23] = 1,048,576
220 = 2,097,152
222 = 4,19,304
22 = 8,388,608
22 = 16,777,216

thm

16

16
16
16
16
16

S W R

